@@ -20,11 +20,11 @@ RoadRunner transit model (`pytransit.RRModel`). The RoadRunner model is an advan
20
20
efficiently use any radially symmetric function to model stellar limb darkening, as described in
21
21
`Parviainen (2020) <https://ui.adsabs.harvard.edu/link_gateway/2020MNRAS.499.1633P/PUB_HTML >`_.
22
22
23
- Since `TSModel ` is based on `RRModel `, it offers the same flexibility for modeling stellar limb darkening.
24
- The `ldmodel ` argument can be one of the following:
23
+ Since `~pytransit. TSModel ` is based on `~pytransit. RRModel `, it offers the same flexibility for modeling stellar limb
24
+ darkening. The `` ldmodel ` ` argument can be one of the following:
25
25
26
- - a string representing one of the built-in limb darkening models supported by `RRModel `, such as
27
- `power-2 ` or `quadratic `,
26
+ - a string representing one of the built-in limb darkening models supported by `` RRModel ` `, such as
27
+ `` power-2 `` or `` quadratic ` `,
28
28
- an object that is a subclass of the `pytransit.models.ldmodel.LDModel ` limb darkening model class,
29
29
- a tuple of two functions, with the first returning the limb darkening profile as a function of
30
30
:math: `\mu ` and the second returning its integral over the stellar disk, or
@@ -44,7 +44,6 @@ An `ExoIris` instance can be saved to a FITS file using the `ExoIris.save` metho
44
44
optimiser state, and MCMC sampler state, allowing the model to be fully recreated later using the `load_model `
45
45
function.
46
46
47
-
48
47
.. autosummary ::
49
48
:toctree: api/
50
49
@@ -59,19 +58,27 @@ where a saved low-resolution analysis can be loaded as a new analysis using the
59
58
like the radius ratio and limb darkening knots can be adjusted to increase the resolution of the estimated
60
59
transmission spectrum, and even the observational data can be changed to improve the data resolution.
61
60
62
-
63
61
.. autosummary ::
64
62
:toctree: api/
65
63
66
64
ExoIris.set_data
67
65
ExoIris.set_radius_ratio_knots
68
66
ExoIris.add_radius_ratio_knots
67
+ ExoIris.create_dense_radius_ratio_block
68
+ ExoIris.plot_setup
69
+
70
+ Parameterization and priors
71
+ ---------------------------
72
+
73
+ .. autosummary ::
74
+ :toctree: api/
75
+
76
+ ExoIris.set_prior
77
+ ExoIris.set_baseline_prior
69
78
ExoIris.set_ldtk_prior
70
79
ExoIris.set_radius_ratio_prior
71
- ExoIris.plot_setup
72
80
ExoIris.print_parameters
73
81
74
-
75
82
Noise model setup
76
83
-----------------
77
84
@@ -89,6 +96,7 @@ via the `ExoIris.gp` attribute.
89
96
ExoIris.set_gp_hyperparameters
90
97
ExoIris.optimize_gp_hyperparameters
91
98
ExoIris.gp
99
+ ExoIris.plot_white_gp_predictions
92
100
93
101
94
102
First steps
@@ -159,4 +167,32 @@ Utility methods
159
167
.. autosummary ::
160
168
:toctree: api/
161
169
170
+ ExoIris.reset
162
171
ExoIris.create_initial_population
172
+ ExoIris.lnposterior
173
+
174
+ Properties
175
+ ----------
176
+
177
+ The following properties expose key internal states and parameters of the analysis:
178
+
179
+ .. autosummary ::
180
+ :toctree: api/
181
+
182
+ ExoIris.name
183
+ ExoIris.data
184
+ ExoIris.k_knots
185
+ ExoIris.ndim
186
+ ExoIris.nk
187
+ ExoIris.nldp
188
+ ExoIris.npb
189
+ ExoIris.ldmodel
190
+ ExoIris.sampler
191
+ ExoIris.optimizer
192
+ ExoIris.optimizer_population
193
+ ExoIris.mcmc_chains
194
+ ExoIris.white_times
195
+ ExoIris.white_fluxes
196
+ ExoIris.white_models
197
+ ExoIris.white_errors
198
+ ExoIris.ps
0 commit comments