Skip to content

Way too big imputations #20

@iquasere

Description

@iquasere

Running, on this dataset, these commands

library("pcaMethods")
df <- read.table('norm.tsv', header=TRUE, sep="\t", row.names=1)
imputed = llsImpute(t(norm), correlation = "pearson", allVariables = TRUE)
t(completeObs(imputed))

Gives me some very strange results, with numbers that are bigger than the sum of the non imputted data. E.g., df["A0A090I5T7",] returns

      CS1       CS2       CS3       CS4       CS5       CS6
       NA        NA        NA        NA        NA 0.6316226

and after imputation is

         CS1          CS2          CS3          CS4          CS5          CS6
   0.3368018    0.4863894    0.2958871    0.4730441 1686.0216401    0.6316226

What happened to sample CS5?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions