Skip to content

Commit 15cf873

Browse files
authored
Merge pull request #976 from RahulKonda18/main
added te/chapter1/2-3
2 parents abb71f2 + 26fe94b commit 15cf873

File tree

3 files changed

+483
-0
lines changed

3 files changed

+483
-0
lines changed

chapters/te/_toctree.yml

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,3 +6,7 @@
66
sections:
77
- local: chapter1/1
88
title: పరిచయం
9+
- local: chapter1/2
10+
title: Natural Language Processing (NLP) మరియు Large Language Models (LLMs)
11+
- local: chapter1/3
12+
title: ట్రాన్స్‌ఫార్మర్‌లు, అవి ఏమి చేయగలవు?

chapters/te/chapter1/2.mdx

Lines changed: 54 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,54 @@
1+
# Natural Language Processing (NLP) మరియు Large Language Models (LLMs)[[natural-language-processing-and-large-language-models]]
2+
3+
<CourseFloatingBanner chapter={1} classNames="absolute z-10 right-0 top-0" />
4+
5+
Transformer మోడల్స్‌లోకి వెళ్లే ముందు, Natural Language Processing అంటే ఏమిటి, Large Language Models ఈ రంగాన్ని ఎలా మార్చాయి మరియు మనం దాని గురించి ఎందుకు శ్రద్ధ వహించాలి అనే దానిపై త్వరగా ఒక అవలోకనం చేద్దాం.
6+
7+
## NLP అంటే ఏమిటి?[[what-is-nlp]]
8+
9+
<Youtube id="iNzlxWUAjd4" />
10+
11+
NLP అనేది మానవ భాషకు సంబంధించిన ప్రతిదాన్ని అర్థం చేసుకోవడంపై దృష్టి సారించే భాషాశాస్త్రం మరియు మెషిన్ లెర్నింగ్ రంగం. NLP పనుల లక్ష్యం కేవలం ఒక్కొక్క పదాన్ని వ్యక్తిగతంగా అర్థం చేసుకోవడం మాత్రమే కాదు, ఆ పదాల సందర్భాన్ని అర్థం చేసుకోగలగడం.
12+
13+
సాధారణ NLP పనుల జాబితా క్రింద ఇవ్వబడింది, ప్రతిదానికి కొన్ని ఉదాహరణలతో:
14+
15+
- **మొత్తం వాక్యాలను వర్గీకరించడం**: ఒక సమీక్ష యొక్క భావనను పొందడం, ఒక ఇమెయిల్ స్పామా కాదా అని గుర్తించడం, ఒక వాక్యం వ్యాకరణపరంగా సరైనదా లేదా రెండు వాక్యాలు తార్కికంగా సంబంధం కలిగి ఉన్నాయా లేదా అని నిర్ణయించడం.
16+
- **ఒక వాక్యంలో ప్రతి పదాన్ని వర్గీకరించడం**: ఒక వాక్యం యొక్క వ్యాకరణ భాగాలను (నామవాచకం, క్రియ, విశేషణం) లేదా పేరున్న ఎంటిటీలను (వ్యక్తి, స్థలం, సంస్థ) గుర్తించడం
17+
- **వచన కంటెంట్‌ను రూపొందించడం**: స్వయంచాలకంగా సృష్టించబడిన వచనంతో ఒక ప్రాంప్ట్‌ను పూర్తి చేయడం, మాస్క్ చేయబడిన పదాలతో ఒక వచనంలో ఖాళీలను పూరించడం.
18+
- **ఒక వచనం నుండి సమాధానాన్ని సేకరించడం**: ఒక ప్రశ్న మరియు సందర్భం ఇచ్చినప్పుడు, సందర్భంలో అందించబడిన సమాచారం ఆధారంగా ప్రశ్నకు సమాధానాన్ని సేకరించడం.
19+
- **ఇన్‌పుట్ వచనం నుండి కొత్త వాక్యాన్ని రూపొందించడం**: ఒక వచనాన్ని మరొక భాషలోకి అనువదించడం, ఒక వచనాన్ని సంగ్రహించడం.
20+
21+
NLP కేవలం వ్రాతపూర్వక వచనానికి మాత్రమే పరిమితం కాదు. ఇది ప్రసంగ గుర్తింపు మరియు కంప్యూటర్ విజన్‌లో సంక్లిష్ట సవాళ్లను కూడా పరిష్కరిస్తుంది, ఉదాహరణకు ఆడియో నమూనా యొక్క ట్రాన్స్‌క్రిప్ట్ లేదా చిత్రం యొక్క వివరణను రూపొందించడం వంటివి.
22+
23+
## Large Language Models (LLMs) పెరుగుదల[[rise-of-llms]]
24+
25+
ఇటీవలి సంవత్సరాలలో, NLP రంగం Large Language Models (LLMs) ద్వారా విప్లవాత్మకంగా మారింది. GPT (Generative Pre-trained Transformer) మరియు [Llama](https://huggingface.co/meta-llama), వంటి ఆర్కిటెక్చర్లను కలిగి ఉన్న ఈ మోడల్స్, భాషా ప్రాసెసింగ్‌లో సాధ్యమయ్యే వాటిని మార్చాయి.
26+
27+
<Tip>
28+
29+
ఒక Large Language Model (LLM) అనేది భారీ మొత్తంలో వచన డేటాపై శిక్షణ పొందిన ఒక AI మోడల్, ఇది మానవ-వంటి వచనాన్ని అర్థం చేసుకోగలదు మరియు ఉత్పత్తి చేయగలదు, భాషలో నమూనాలను గుర్తించగలదు మరియు టాస్క్-నిర్దిష్ట శిక్షణ లేకుండా విస్తృత శ్రేణి భాషా పనులను చేయగలదు. అవి Natural Language Processing (NLP) రంగంలో గణనీయమైన పురోగతిని సూచిస్తాయి.
30+
31+
</Tip>
32+
33+
LLMలు వీటి ద్వారా వర్గీకరించబడతాయి:
34+
35+
- **ప్రమాణం**: ఇవి లక్షల, బిలియన్ల లేదా సెంట్స్ బిలియన్ల పరామితులను కలిగి ఉంటాయి
36+
- **సామాన్య సామర్థ్యాలు**: ఇవి టాస్క్-నిర్దిష్ట శిక్షణ లేకుండా అనేక పనులను నిర్వహించగలవు
37+
- **ఇన్-కాంటెక్స్ట్ లెర్నింగ్**: ఇవి ప్రాంప్ట్‌లో అందించిన ఉదాహరణల నుండి నేర్చుకోవచ్చు
38+
- **ఉద్భవించే సామర్థ్యాలు**: ఈ మోడల్స్ పరిమాణంలో పెరిగేకొద్దీ, అవి స్పష్టంగా ప్రోగ్రామ్ చేయబడని లేదా ఊహించని సామర్థ్యాలను ప్రదర్శిస్తాయి
39+
40+
LLMల ఉద్భవం, ప్రత్యేక NLP పనుల కోసం ప్రత్యేక మోడల్స్‌ను నిర్మించడంనుంచి, విస్తృత శ్రేణా భాషా పనులను పరిష్కరించడానికి ప్రాంప్ట్ చేయబడిన లేదా ఫైన్-ట్యూన్ చేయబడిన ఒక పెద్ద మోడల్‌ను ఉపయోగించడం వరకు మార్పు తీసుకువచ్చింది. ఇది సాంకేతిక భాషా ప్రాసెసింగ్‌ను మరింత అందుబాటులోకి తెచ్చింది, కానీ సమర్థత, నైతికత మరియు అమలు వంటి కొత్త సవాళ్లను కూడా పరిచయం చేసింది.
41+
42+
LLMలు కూడా ముఖ్యమైన పరిమితులను కలిగి ఉంటాయి:
43+
44+
- **హాల్యూసినేషన్స్**: అవి తప్పు సమాచారాన్ని నమ్మకంగా ఉత్పత్తి చేయగలవు
45+
- **నిజమైన అర్థం లేకపోవడం**: అవి ప్రపంచాన్ని నిజంగా అర్థం చేసుకోలేవు మరియు కేవలం గణాంక నమూనాలపై పనిచేస్తాయి
46+
- **పక్షపాతం**: అవి శిక్షణ డేటా లేదా ఇన్‌పుట్‌లో ఉన్న పక్షపాతాన్ని పునరావృతించవచ్చు
47+
- **కాంటెక్స్ట్ విండోలు**: అవి పరిమిత సందర్భ విండోలను కలిగి ఉంటాయి (అయితే ఇది మెరుగుపడుతోంది)
48+
- **కంప్యూటేషనల్ వనరులు**: అవి గణనీయమైన కంప్యూటేషనల్ వనరులను అవసరం
49+
50+
## భాషా ప్రాసెసింగ్ ఎందుకు సవాలుగా ఉంది?[[why-is-it-challenging]]
51+
52+
కంప్యూటర్లు మానవులు ప్రాసెస్ చేసే విధంగా సమాచారాన్ని ప్రాసెస్ చేయవు. ఉదాహరణకు, మనం "I am hungry" అనే వాక్యాన్ని చదివినప్పుడు, మనం దాని అర్థాన్ని సులభంగా అర్థం చేసుకోగలం. అదేవిధంగా, "I am hungry" మరియు "I am sad" వంటి రెండు వాక్యాలు ఇచ్చినప్పుడు, అవి ఎంత సారూప్యంగా ఉన్నాయో మనం సులభంగా నిర్ణయించగలం. మెషిన్ లెర్నింగ్ (ML) మోడల్స్‌కు, అటువంటి పనులు మరింత కష్టం. మోడల్ దాని నుండి నేర్చుకోవడానికి వీలుగా వచనాన్ని ప్రాసెస్ చేయాలి. మరియు భాష సంక్లిష్టంగా ఉన్నందున, ఈ ప్రాసెసింగ్ ఎలా చేయబడాలి అనే దాని గురించి మనం జాగ్రత్తగా ఆలోచించాలి. వచనాన్ని ఎలా సూచించాలో చాలా పరిశోధనలు జరిగాయి, మరియు తదుపరి అధ్యాయంలో కొన్ని పద్ధతులను చూద్దాం.
53+
54+
LLMలలో పురోగతి ఉన్నప్పటికీ, అనేక ప్రాథమిక సవాళ్లు అలాగే ఉన్నాయి. వీటిలో అస్పష్టత, సాంస్కృతిక సందర్భం, వ్యంగ్యం మరియు హాస్యం అర్థం చేసుకోవడం ఉన్నాయి. LLMలు విభిన్న డేటాసెట్‌లపై భారీ శిక్షణ ద్వారా ఈ సవాళ్లను పరిష్కరిస్తాయి, అయితే అనేక సంక్లిష్ట దృశ్యాలలో మానవ-స్థాయి అవగాహనకు తరచుగా తక్కువగా ఉంటాయి.

0 commit comments

Comments
 (0)