Skip to content

Commit 0517f0d

Browse files
committed
Merge branch 'main' into refactor-hooks
2 parents e81c777 + e46e139 commit 0517f0d

File tree

7 files changed

+122
-32
lines changed

7 files changed

+122
-32
lines changed

src/diffusers/models/attention_dispatch.py

Lines changed: 81 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -38,26 +38,37 @@
3838
from ..utils.constants import DIFFUSERS_ATTN_BACKEND, DIFFUSERS_ATTN_CHECKS
3939

4040

41-
logger = get_logger(__name__) # pylint: disable=invalid-name
42-
43-
44-
if is_flash_attn_available() and is_flash_attn_version(">=", "2.6.3"):
41+
_REQUIRED_FLASH_VERSION = "2.6.3"
42+
_REQUIRED_SAGE_VERSION = "2.1.1"
43+
_REQUIRED_FLEX_VERSION = "2.5.0"
44+
_REQUIRED_XLA_VERSION = "2.2"
45+
_REQUIRED_XFORMERS_VERSION = "0.0.29"
46+
47+
_CAN_USE_FLASH_ATTN = is_flash_attn_available() and is_flash_attn_version(">=", _REQUIRED_FLASH_VERSION)
48+
_CAN_USE_FLASH_ATTN_3 = is_flash_attn_3_available()
49+
_CAN_USE_SAGE_ATTN = is_sageattention_available() and is_sageattention_version(">=", _REQUIRED_SAGE_VERSION)
50+
_CAN_USE_FLEX_ATTN = is_torch_version(">=", _REQUIRED_FLEX_VERSION)
51+
_CAN_USE_NPU_ATTN = is_torch_npu_available()
52+
_CAN_USE_XLA_ATTN = is_torch_xla_available() and is_torch_xla_version(">=", _REQUIRED_XLA_VERSION)
53+
_CAN_USE_XFORMERS_ATTN = is_xformers_available() and is_xformers_version(">=", _REQUIRED_XFORMERS_VERSION)
54+
55+
56+
if _CAN_USE_FLASH_ATTN:
4557
from flash_attn import flash_attn_func, flash_attn_varlen_func
4658
else:
47-
logger.warning("`flash-attn` is not available or the version is too old. Please install `flash-attn>=2.6.3`.")
4859
flash_attn_func = None
4960
flash_attn_varlen_func = None
5061

5162

52-
if is_flash_attn_3_available():
63+
if _CAN_USE_FLASH_ATTN_3:
5364
from flash_attn_interface import flash_attn_func as flash_attn_3_func
5465
from flash_attn_interface import flash_attn_varlen_func as flash_attn_3_varlen_func
5566
else:
5667
flash_attn_3_func = None
5768
flash_attn_3_varlen_func = None
5869

5970

60-
if is_sageattention_available() and is_sageattention_version(">=", "2.1.1"):
71+
if _CAN_USE_SAGE_ATTN:
6172
from sageattention import (
6273
sageattn,
6374
sageattn_qk_int8_pv_fp8_cuda,
@@ -67,9 +78,6 @@
6778
sageattn_varlen,
6879
)
6980
else:
70-
logger.warning(
71-
"`sageattention` is not available or the version is too old. Please install `sageattention>=2.1.1`."
72-
)
7381
sageattn = None
7482
sageattn_qk_int8_pv_fp16_cuda = None
7583
sageattn_qk_int8_pv_fp16_triton = None
@@ -78,39 +86,39 @@
7886
sageattn_varlen = None
7987

8088

81-
if is_torch_version(">=", "2.5.0"):
89+
if _CAN_USE_FLEX_ATTN:
8290
# We cannot import the flex_attention function from the package directly because it is expected (from the
8391
# pytorch documentation) that the user may compile it. If we import directly, we will not have access to the
8492
# compiled function.
8593
import torch.nn.attention.flex_attention as flex_attention
8694

8795

88-
if is_torch_npu_available():
96+
if _CAN_USE_NPU_ATTN:
8997
from torch_npu import npu_fusion_attention
9098
else:
9199
npu_fusion_attention = None
92100

93101

94-
if is_torch_xla_available() and is_torch_xla_version(">", "2.2"):
102+
if _CAN_USE_XLA_ATTN:
95103
from torch_xla.experimental.custom_kernel import flash_attention as xla_flash_attention
96104
else:
97105
xla_flash_attention = None
98106

99107

100-
if is_xformers_available() and is_xformers_version(">=", "0.0.29"):
108+
if _CAN_USE_XFORMERS_ATTN:
101109
import xformers.ops as xops
102110
else:
103-
logger.warning("`xformers` is not available or the version is too old. Please install `xformers>=0.0.29`.")
104111
xops = None
105112

106113

114+
logger = get_logger(__name__) # pylint: disable=invalid-name
115+
107116
# TODO(aryan): Add support for the following:
108117
# - Sage Attention++
109118
# - block sparse, radial and other attention methods
110119
# - CP with sage attention, flex, xformers, other missing backends
111120
# - Add support for normal and CP training with backends that don't support it yet
112121

113-
114122
_SAGE_ATTENTION_PV_ACCUM_DTYPE = Literal["fp32", "fp32+fp32"]
115123
_SAGE_ATTENTION_QK_QUANT_GRAN = Literal["per_thread", "per_warp"]
116124
_SAGE_ATTENTION_QUANTIZATION_BACKEND = Literal["cuda", "triton"]
@@ -179,13 +187,16 @@ def list_backends(cls):
179187

180188

181189
@contextlib.contextmanager
182-
def attention_backend(backend: AttentionBackendName = AttentionBackendName.NATIVE):
190+
def attention_backend(backend: Union[str, AttentionBackendName] = AttentionBackendName.NATIVE):
183191
"""
184192
Context manager to set the active attention backend.
185193
"""
186194
if backend not in _AttentionBackendRegistry._backends:
187195
raise ValueError(f"Backend {backend} is not registered.")
188196

197+
backend = AttentionBackendName(backend)
198+
_check_attention_backend_requirements(backend)
199+
189200
old_backend = _AttentionBackendRegistry._active_backend
190201
_AttentionBackendRegistry._active_backend = backend
191202

@@ -226,9 +237,10 @@ def dispatch_attention_fn(
226237
"dropout_p": dropout_p,
227238
"is_causal": is_causal,
228239
"scale": scale,
229-
"enable_gqa": enable_gqa,
230240
**attention_kwargs,
231241
}
242+
if is_torch_version(">=", "2.5.0"):
243+
kwargs["enable_gqa"] = enable_gqa
232244

233245
if _AttentionBackendRegistry._checks_enabled:
234246
removed_kwargs = set(kwargs) - set(_AttentionBackendRegistry._supported_arg_names[backend_name])
@@ -305,6 +317,57 @@ def _check_shape(
305317
# ===== Helper functions =====
306318

307319

320+
def _check_attention_backend_requirements(backend: AttentionBackendName) -> None:
321+
if backend in [AttentionBackendName.FLASH, AttentionBackendName.FLASH_VARLEN]:
322+
if not _CAN_USE_FLASH_ATTN:
323+
raise RuntimeError(
324+
f"Flash Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `flash-attn>={_REQUIRED_FLASH_VERSION}`."
325+
)
326+
327+
elif backend in [AttentionBackendName._FLASH_3, AttentionBackendName._FLASH_VARLEN_3]:
328+
if not _CAN_USE_FLASH_ATTN_3:
329+
raise RuntimeError(
330+
f"Flash Attention 3 backend '{backend.value}' is not usable because of missing package or the version is too old. Please build FA3 beta release from source."
331+
)
332+
333+
elif backend in [
334+
AttentionBackendName.SAGE,
335+
AttentionBackendName.SAGE_VARLEN,
336+
AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA,
337+
AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA_SM90,
338+
AttentionBackendName._SAGE_QK_INT8_PV_FP16_CUDA,
339+
AttentionBackendName._SAGE_QK_INT8_PV_FP16_TRITON,
340+
]:
341+
if not _CAN_USE_SAGE_ATTN:
342+
raise RuntimeError(
343+
f"Sage Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `sageattention>={_REQUIRED_SAGE_VERSION}`."
344+
)
345+
346+
elif backend == AttentionBackendName.FLEX:
347+
if not _CAN_USE_FLEX_ATTN:
348+
raise RuntimeError(
349+
f"Flex Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch>=2.5.0`."
350+
)
351+
352+
elif backend == AttentionBackendName._NATIVE_NPU:
353+
if not _CAN_USE_NPU_ATTN:
354+
raise RuntimeError(
355+
f"NPU Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch_npu`."
356+
)
357+
358+
elif backend == AttentionBackendName._NATIVE_XLA:
359+
if not _CAN_USE_XLA_ATTN:
360+
raise RuntimeError(
361+
f"XLA Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch_xla>={_REQUIRED_XLA_VERSION}`."
362+
)
363+
364+
elif backend == AttentionBackendName.XFORMERS:
365+
if not _CAN_USE_XFORMERS_ATTN:
366+
raise RuntimeError(
367+
f"Xformers Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `xformers>={_REQUIRED_XFORMERS_VERSION}`."
368+
)
369+
370+
308371
@functools.lru_cache(maxsize=128)
309372
def _prepare_for_flash_attn_or_sage_varlen_without_mask(
310373
batch_size: int,

src/diffusers/models/modeling_utils.py

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -622,19 +622,21 @@ def set_attention_backend(self, backend: str) -> None:
622622
attention as backend.
623623
"""
624624
from .attention import AttentionModuleMixin
625-
from .attention_dispatch import AttentionBackendName
625+
from .attention_dispatch import AttentionBackendName, _check_attention_backend_requirements
626626

627627
# TODO: the following will not be required when everything is refactored to AttentionModuleMixin
628628
from .attention_processor import Attention, MochiAttention
629629

630+
logger.warning("Attention backends are an experimental feature and the API may be subject to change.")
631+
630632
backend = backend.lower()
631633
available_backends = {x.value for x in AttentionBackendName.__members__.values()}
632634
if backend not in available_backends:
633635
raise ValueError(f"`{backend=}` must be one of the following: " + ", ".join(available_backends))
634-
635636
backend = AttentionBackendName(backend)
636-
attention_classes = (Attention, MochiAttention, AttentionModuleMixin)
637+
_check_attention_backend_requirements(backend)
637638

639+
attention_classes = (Attention, MochiAttention, AttentionModuleMixin)
638640
for module in self.modules():
639641
if not isinstance(module, attention_classes):
640642
continue
@@ -651,6 +653,8 @@ def reset_attention_backend(self) -> None:
651653
from .attention import AttentionModuleMixin
652654
from .attention_processor import Attention, MochiAttention
653655

656+
logger.warning("Attention backends are an experimental feature and the API may be subject to change.")
657+
654658
attention_classes = (Attention, MochiAttention, AttentionModuleMixin)
655659
for module in self.modules():
656660
if not isinstance(module, attention_classes):

src/diffusers/models/unets/unet_2d_condition.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -165,7 +165,7 @@ class conditioning with `class_embed_type` equal to `None`.
165165
"""
166166

167167
_supports_gradient_checkpointing = True
168-
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
168+
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"]
169169
_skip_layerwise_casting_patterns = ["norm"]
170170
_repeated_blocks = ["BasicTransformerBlock"]
171171

src/diffusers/modular_pipelines/components_manager.py

Lines changed: 24 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -386,6 +386,7 @@ def add(self, name: str, component: Any, collection: Optional[str] = None):
386386
id(component) is Python's built-in unique identifier for the object
387387
"""
388388
component_id = f"{name}_{id(component)}"
389+
is_new_component = True
389390

390391
# check for duplicated components
391392
for comp_id, comp in self.components.items():
@@ -394,6 +395,7 @@ def add(self, name: str, component: Any, collection: Optional[str] = None):
394395
if comp_name == name:
395396
logger.warning(f"ComponentsManager: component '{name}' already exists as '{comp_id}'")
396397
component_id = comp_id
398+
is_new_component = False
397399
break
398400
else:
399401
logger.warning(
@@ -426,19 +428,39 @@ def add(self, name: str, component: Any, collection: Optional[str] = None):
426428
logger.warning(
427429
f"ComponentsManager: removing existing {name} from collection '{collection}': {comp_id}"
428430
)
429-
self.remove(comp_id)
431+
# remove existing component from this collection (if it is not in any other collection, will be removed from ComponentsManager)
432+
self.remove_from_collection(comp_id, collection)
433+
430434
self.collections[collection].add(component_id)
431435
logger.info(
432436
f"ComponentsManager: added component '{name}' in collection '{collection}': {component_id}"
433437
)
434438
else:
435439
logger.info(f"ComponentsManager: added component '{name}' as '{component_id}'")
436440

437-
if self._auto_offload_enabled:
441+
if self._auto_offload_enabled and is_new_component:
438442
self.enable_auto_cpu_offload(self._auto_offload_device)
439443

440444
return component_id
441445

446+
def remove_from_collection(self, component_id: str, collection: str):
447+
"""
448+
Remove a component from a collection.
449+
"""
450+
if collection not in self.collections:
451+
logger.warning(f"Collection '{collection}' not found in ComponentsManager")
452+
return
453+
if component_id not in self.collections[collection]:
454+
logger.warning(f"Component '{component_id}' not found in collection '{collection}'")
455+
return
456+
# remove from the collection
457+
self.collections[collection].remove(component_id)
458+
# check if this component is in any other collection
459+
comp_colls = [coll for coll, comps in self.collections.items() if component_id in comps]
460+
if not comp_colls: # only if no other collection contains this component, remove it
461+
logger.warning(f"ComponentsManager: removing component '{component_id}' from ComponentsManager")
462+
self.remove(component_id)
463+
442464
def remove(self, component_id: str = None):
443465
"""
444466
Remove a component from the ComponentsManager.

src/diffusers/modular_pipelines/modular_pipeline_utils.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -185,6 +185,8 @@ def load_id(self) -> str:
185185
Unique identifier for this spec's pretrained load, composed of repo|subfolder|variant|revision (no empty
186186
segments).
187187
"""
188+
if self.default_creation_method == "from_config":
189+
return "null"
188190
parts = [getattr(self, k) for k in self.loading_fields()]
189191
parts = ["null" if p is None else p for p in parts]
190192
return "|".join(p for p in parts if p)

tests/models/test_modeling_common.py

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,6 @@
7575
require_torch_2,
7676
require_torch_accelerator,
7777
require_torch_accelerator_with_training,
78-
require_torch_gpu,
7978
require_torch_multi_accelerator,
8079
require_torch_version_greater,
8180
run_test_in_subprocess,
@@ -1829,8 +1828,8 @@ def test_wrong_device_map_raises_error(self, device_map, msg_substring):
18291828

18301829
assert msg_substring in str(err_ctx.exception)
18311830

1832-
@parameterized.expand([0, "cuda", torch.device("cuda")])
1833-
@require_torch_gpu
1831+
@parameterized.expand([0, torch_device, torch.device(torch_device)])
1832+
@require_torch_accelerator
18341833
def test_passing_non_dict_device_map_works(self, device_map):
18351834
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
18361835
model = self.model_class(**init_dict).eval()
@@ -1839,8 +1838,8 @@ def test_passing_non_dict_device_map_works(self, device_map):
18391838
loaded_model = self.model_class.from_pretrained(tmpdir, device_map=device_map)
18401839
_ = loaded_model(**inputs_dict)
18411840

1842-
@parameterized.expand([("", "cuda"), ("", torch.device("cuda"))])
1843-
@require_torch_gpu
1841+
@parameterized.expand([("", torch_device), ("", torch.device(torch_device))])
1842+
@require_torch_accelerator
18441843
def test_passing_dict_device_map_works(self, name, device):
18451844
# There are other valid dict-based `device_map` values too. It's best to refer to
18461845
# the docs for those: https://huggingface.co/docs/accelerate/en/concept_guides/big_model_inference#the-devicemap.
@@ -1945,7 +1944,7 @@ def test_push_to_hub_library_name(self):
19451944
delete_repo(self.repo_id, token=TOKEN)
19461945

19471946

1948-
@require_torch_gpu
1947+
@require_torch_accelerator
19491948
@require_torch_2
19501949
@is_torch_compile
19511950
@slow
@@ -2013,7 +2012,7 @@ def test_compile_with_group_offloading(self):
20132012
model.eval()
20142013
# TODO: Can test for other group offloading kwargs later if needed.
20152014
group_offload_kwargs = {
2016-
"onload_device": "cuda",
2015+
"onload_device": torch_device,
20172016
"offload_device": "cpu",
20182017
"offload_type": "block_level",
20192018
"num_blocks_per_group": 1,

tests/models/unets/test_models_unet_2d_condition.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -358,7 +358,7 @@ class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.Test
358358
model_class = UNet2DConditionModel
359359
main_input_name = "sample"
360360
# We override the items here because the unet under consideration is small.
361-
model_split_percents = [0.5, 0.3, 0.4]
361+
model_split_percents = [0.5, 0.34, 0.4]
362362

363363
@property
364364
def dummy_input(self):

0 commit comments

Comments
 (0)