@@ -1114,17 +1114,22 @@ def compute_text_embeddings(prompt):
11141114 )
11151115
11161116 # Scheduler and math around the number of training steps.
1117- overrode_max_train_steps = False
1118- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
1117+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
1118+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
11191119 if args .max_train_steps is None :
1120- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1121- overrode_max_train_steps = True
1120+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
1121+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
1122+ num_training_steps_for_scheduler = (
1123+ args .num_train_epochs * accelerator .num_processes * num_update_steps_per_epoch
1124+ )
1125+ else :
1126+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
11221127
11231128 lr_scheduler = get_scheduler (
11241129 args .lr_scheduler ,
11251130 optimizer = optimizer ,
1126- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
1127- num_training_steps = args . max_train_steps * accelerator . num_processes ,
1131+ num_warmup_steps = num_warmup_steps_for_scheduler ,
1132+ num_training_steps = num_training_steps_for_scheduler ,
11281133 num_cycles = args .lr_num_cycles ,
11291134 power = args .lr_power ,
11301135 )
@@ -1156,8 +1161,14 @@ def compute_text_embeddings(prompt):
11561161
11571162 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
11581163 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
1159- if overrode_max_train_steps :
1164+ if args . max_train_steps is None :
11601165 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1166+ if num_training_steps_for_scheduler != args .max_train_steps :
1167+ logger .warning (
1168+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
1169+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
1170+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
1171+ )
11611172 # Afterwards we recalculate our number of training epochs
11621173 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
11631174
0 commit comments