Skip to content

Commit 15ca813

Browse files
authored
Add transformer tests
1 parent 7235805 commit 15ca813

File tree

1 file changed

+180
-0
lines changed

1 file changed

+180
-0
lines changed
Lines changed: 180 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,180 @@
1+
# coding=utf-8
2+
# Copyright 2024 HuggingFace Inc.
3+
#
4+
# Licensed under the Apache License, Version 2.0 (the "License");
5+
# you may not use this file except in compliance with the License.
6+
# You may obtain a copy of the License at
7+
#
8+
# http://www.apache.org/licenses/LICENSE-2.0
9+
#
10+
# Unless required by applicable law or agreed to in writing, software
11+
# distributed under the License is distributed on an "AS IS" BASIS,
12+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13+
# See the License for the specific language governing permissions and
14+
# limitations under the License.
15+
16+
import unittest
17+
18+
import torch
19+
20+
from diffusers import ChromaTransformer2DModel
21+
from diffusers.models.attention_processor import FluxIPAdapterJointAttnProcessor2_0
22+
from diffusers.models.embeddings import ImageProjection
23+
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
24+
25+
from ..test_modeling_common import LoraHotSwappingForModelTesterMixin, ModelTesterMixin, TorchCompileTesterMixin
26+
27+
28+
enable_full_determinism()
29+
30+
31+
def create_chroma_ip_adapter_state_dict(model):
32+
# "ip_adapter" (cross-attention weights)
33+
ip_cross_attn_state_dict = {}
34+
key_id = 0
35+
36+
for name in model.attn_processors.keys():
37+
if name.startswith("single_transformer_blocks"):
38+
continue
39+
40+
joint_attention_dim = model.config["joint_attention_dim"]
41+
hidden_size = model.config["num_attention_heads"] * model.config["attention_head_dim"]
42+
sd = FluxIPAdapterJointAttnProcessor2_0(
43+
hidden_size=hidden_size, cross_attention_dim=joint_attention_dim, scale=1.0
44+
).state_dict()
45+
ip_cross_attn_state_dict.update(
46+
{
47+
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
48+
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
49+
f"{key_id}.to_k_ip.bias": sd["to_k_ip.0.bias"],
50+
f"{key_id}.to_v_ip.bias": sd["to_v_ip.0.bias"],
51+
}
52+
)
53+
54+
key_id += 1
55+
56+
# "image_proj" (ImageProjection layer weights)
57+
58+
image_projection = ImageProjection(
59+
cross_attention_dim=model.config["joint_attention_dim"],
60+
image_embed_dim=model.config["pooled_projection_dim"],
61+
num_image_text_embeds=4,
62+
)
63+
64+
ip_image_projection_state_dict = {}
65+
sd = image_projection.state_dict()
66+
ip_image_projection_state_dict.update(
67+
{
68+
"proj.weight": sd["image_embeds.weight"],
69+
"proj.bias": sd["image_embeds.bias"],
70+
"norm.weight": sd["norm.weight"],
71+
"norm.bias": sd["norm.bias"],
72+
}
73+
)
74+
75+
del sd
76+
ip_state_dict = {}
77+
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
78+
return ip_state_dict
79+
80+
81+
class ChromaTransformerTests(ModelTesterMixin, unittest.TestCase):
82+
model_class = ChromaTransformer2DModel
83+
main_input_name = "hidden_states"
84+
# We override the items here because the transformer under consideration is small.
85+
model_split_percents = [0.7, 0.6, 0.6]
86+
87+
# Skip setting testing with default: AttnProcessor
88+
uses_custom_attn_processor = True
89+
90+
@property
91+
def dummy_input(self):
92+
batch_size = 1
93+
num_latent_channels = 4
94+
num_image_channels = 3
95+
height = width = 4
96+
sequence_length = 48
97+
embedding_dim = 32
98+
99+
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
100+
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
101+
text_ids = torch.randn((sequence_length, num_image_channels)).to(torch_device)
102+
image_ids = torch.randn((height * width, num_image_channels)).to(torch_device)
103+
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
104+
105+
return {
106+
"hidden_states": hidden_states,
107+
"encoder_hidden_states": encoder_hidden_states,
108+
"img_ids": image_ids,
109+
"txt_ids": text_ids,
110+
"timestep": timestep,
111+
}
112+
113+
@property
114+
def input_shape(self):
115+
return (16, 4)
116+
117+
@property
118+
def output_shape(self):
119+
return (16, 4)
120+
121+
def prepare_init_args_and_inputs_for_common(self):
122+
init_dict = {
123+
"patch_size": 1,
124+
"in_channels": 4,
125+
"num_layers": 1,
126+
"num_single_layers": 1,
127+
"attention_head_dim": 16,
128+
"num_attention_heads": 2,
129+
"joint_attention_dim": 32,
130+
"axes_dims_rope": [4, 4, 8],
131+
}
132+
133+
inputs_dict = self.dummy_input
134+
return init_dict, inputs_dict
135+
136+
def test_deprecated_inputs_img_txt_ids_3d(self):
137+
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
138+
model = self.model_class(**init_dict)
139+
model.to(torch_device)
140+
model.eval()
141+
142+
with torch.no_grad():
143+
output_1 = model(**inputs_dict).to_tuple()[0]
144+
145+
# update inputs_dict with txt_ids and img_ids as 3d tensors (deprecated)
146+
text_ids_3d = inputs_dict["txt_ids"].unsqueeze(0)
147+
image_ids_3d = inputs_dict["img_ids"].unsqueeze(0)
148+
149+
assert text_ids_3d.ndim == 3, "text_ids_3d should be a 3d tensor"
150+
assert image_ids_3d.ndim == 3, "img_ids_3d should be a 3d tensor"
151+
152+
inputs_dict["txt_ids"] = text_ids_3d
153+
inputs_dict["img_ids"] = image_ids_3d
154+
155+
with torch.no_grad():
156+
output_2 = model(**inputs_dict).to_tuple()[0]
157+
158+
self.assertEqual(output_1.shape, output_2.shape)
159+
self.assertTrue(
160+
torch.allclose(output_1, output_2, atol=1e-5),
161+
msg="output with deprecated inputs (img_ids and txt_ids as 3d torch tensors) are not equal as them as 2d inputs",
162+
)
163+
164+
def test_gradient_checkpointing_is_applied(self):
165+
expected_set = {"ChromaTransformer2DModel"}
166+
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
167+
168+
169+
class ChromaTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
170+
model_class = FluxTransformer2DModel
171+
172+
def prepare_init_args_and_inputs_for_common(self):
173+
return ChromaTransformerTests().prepare_init_args_and_inputs_for_common()
174+
175+
176+
class ChromaTransformerLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
177+
model_class = ChromaTransformer2DModel
178+
179+
def prepare_init_args_and_inputs_for_common(self):
180+
return ChromaTransformerTests().prepare_init_args_and_inputs_for_common()

0 commit comments

Comments
 (0)