Skip to content

Commit 1a0d9d0

Browse files
authored
Merge branch 'main' into aritra/qunat-blog
2 parents 42673fa + cfdeebd commit 1a0d9d0

File tree

94 files changed

+4444
-490
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

94 files changed

+4444
-490
lines changed

โ€Ž.github/workflows/nightly_tests.ymlโ€Ž

Lines changed: 58 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -347,6 +347,64 @@ jobs:
347347
pip install slack_sdk tabulate
348348
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
349349
350+
run_nightly_quantization_tests:
351+
name: Torch quantization nightly tests
352+
strategy:
353+
fail-fast: false
354+
max-parallel: 2
355+
matrix:
356+
config:
357+
- backend: "bitsandbytes"
358+
test_location: "bnb"
359+
runs-on:
360+
group: aws-g6e-xlarge-plus
361+
container:
362+
image: diffusers/diffusers-pytorch-cuda
363+
options: --shm-size "20gb" --ipc host --gpus 0
364+
steps:
365+
- name: Checkout diffusers
366+
uses: actions/checkout@v3
367+
with:
368+
fetch-depth: 2
369+
- name: NVIDIA-SMI
370+
run: nvidia-smi
371+
- name: Install dependencies
372+
run: |
373+
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
374+
python -m uv pip install -e [quality,test]
375+
python -m uv pip install -U ${{ matrix.config.backend }}
376+
python -m uv pip install pytest-reportlog
377+
- name: Environment
378+
run: |
379+
python utils/print_env.py
380+
- name: ${{ matrix.config.backend }} quantization tests on GPU
381+
env:
382+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
383+
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
384+
CUBLAS_WORKSPACE_CONFIG: :16:8
385+
BIG_GPU_MEMORY: 40
386+
run: |
387+
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
388+
--make-reports=tests_${{ matrix.config.backend }}_torch_cuda \
389+
--report-log=tests_${{ matrix.config.backend }}_torch_cuda.log \
390+
tests/quantization/${{ matrix.config.test_location }}
391+
- name: Failure short reports
392+
if: ${{ failure() }}
393+
run: |
394+
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_stats.txt
395+
cat reports/tests_${{ matrix.config.backend }}_torch_cuda_failures_short.txt
396+
- name: Test suite reports artifacts
397+
if: ${{ always() }}
398+
uses: actions/upload-artifact@v4
399+
with:
400+
name: torch_cuda_${{ matrix.config.backend }}_reports
401+
path: reports
402+
- name: Generate Report and Notify Channel
403+
if: always()
404+
run: |
405+
pip install slack_sdk tabulate
406+
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
407+
350408
# M1 runner currently not well supported
351409
# TODO: (Dhruv) add these back when we setup better testing for Apple Silicon
352410
# run_nightly_tests_apple_m1:

โ€ŽREADME.mdโ€Ž

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,7 @@ Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to l
114114
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
115115
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
116116
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
117-
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
117+
| [Optimization](https://huggingface.co/docs/diffusers/optimization/fp16) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
118118
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
119119
## Contribution
120120

โ€Ždocs/source/en/api/pipelines/cogvideox.mdโ€Ž

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -30,15 +30,17 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.m
3030
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
3131

3232
There are three official CogVideoX checkpoints for text-to-video and video-to-video.
33+
3334
| checkpoints | recommended inference dtype |
34-
|---|---|
35+
|:---:|:---:|
3536
| [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b) | torch.float16 |
3637
| [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b) | torch.bfloat16 |
3738
| [`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b) | torch.bfloat16 |
3839

3940
There are two official CogVideoX checkpoints available for image-to-video.
41+
4042
| checkpoints | recommended inference dtype |
41-
|---|---|
43+
|:---:|:---:|
4244
| [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V) | torch.bfloat16 |
4345
| [`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V) | torch.bfloat16 |
4446

@@ -48,8 +50,9 @@ For the CogVideoX 1.5 series:
4850
- Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
4951

5052
There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
53+
5154
| checkpoints | recommended inference dtype |
52-
|---|---|
55+
|:---:|:---:|
5356
| [`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | torch.bfloat16 |
5457
| [`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | torch.bfloat16 |
5558

โ€Ždocs/source/en/api/pipelines/flux.mdโ€Ž

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -148,7 +148,7 @@ image.save("output.png")
148148
**Note:** `black-forest-labs/Flux.1-Depth-dev` is _not_ a ControlNet model. [`ControlNetModel`] models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Depth Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
149149

150150
```python
151-
# !pip install git+https://github.com/asomoza/image_gen_aux.git
151+
# !pip install git+https://github.com/huggingface/image_gen_aux
152152
import torch
153153
from diffusers import FluxControlPipeline, FluxTransformer2DModel
154154
from diffusers.utils import load_image

โ€Ždocs/source/en/api/pipelines/pag.mdโ€Ž

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -96,6 +96,10 @@ Since RegEx is supported as a way for matching layer identifiers, it is crucial
9696
- all
9797
- __call__
9898

99+
## StableDiffusion3PAGImg2ImgPipeline
100+
[[autodoc]] StableDiffusion3PAGImg2ImgPipeline
101+
- all
102+
- __call__
99103

100104
## PixArtSigmaPAGPipeline
101105
[[autodoc]] PixArtSigmaPAGPipeline

โ€Ždocs/source/en/conceptual/evaluation.mdโ€Ž

Lines changed: 12 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -181,7 +181,7 @@ Then we load the [v1-5 checkpoint](https://huggingface.co/stable-diffusion-v1-5/
181181

182182
```python
183183
model_ckpt_1_5 = "stable-diffusion-v1-5/stable-diffusion-v1-5"
184-
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=weight_dtype).to(device)
184+
sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=torch.float16).to("cuda")
185185

186186
images_1_5 = sd_pipeline_1_5(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images
187187
```
@@ -280,7 +280,7 @@ from diffusers import StableDiffusionInstructPix2PixPipeline
280280

281281
instruct_pix2pix_pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
282282
"timbrooks/instruct-pix2pix", torch_dtype=torch.float16
283-
).to(device)
283+
).to("cuda")
284284
```
285285

286286
Now, we perform the edits:
@@ -326,9 +326,9 @@ from transformers import (
326326

327327
clip_id = "openai/clip-vit-large-patch14"
328328
tokenizer = CLIPTokenizer.from_pretrained(clip_id)
329-
text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to(device)
329+
text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to("cuda")
330330
image_processor = CLIPImageProcessor.from_pretrained(clip_id)
331-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to(device)
331+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to("cuda")
332332
```
333333

334334
Notice that we are using a particular CLIP checkpoint, i.e.,ย `openai/clip-vit-large-patch14`. This is because the Stable Diffusion pre-training was performed with this CLIP variant. For more details, refer to theย [documentation](https://huggingface.co/docs/transformers/model_doc/clip).
@@ -350,7 +350,7 @@ class DirectionalSimilarity(nn.Module):
350350

351351
def preprocess_image(self, image):
352352
image = self.image_processor(image, return_tensors="pt")["pixel_values"]
353-
return {"pixel_values": image.to(device)}
353+
return {"pixel_values": image.to("cuda")}
354354

355355
def tokenize_text(self, text):
356356
inputs = self.tokenizer(
@@ -360,7 +360,7 @@ class DirectionalSimilarity(nn.Module):
360360
truncation=True,
361361
return_tensors="pt",
362362
)
363-
return {"input_ids": inputs.input_ids.to(device)}
363+
return {"input_ids": inputs.input_ids.to("cuda")}
364364

365365
def encode_image(self, image):
366366
preprocessed_image = self.preprocess_image(image)
@@ -459,6 +459,7 @@ with ZipFile(local_filepath, "r") as zipper:
459459
```python
460460
from PIL import Image
461461
import os
462+
import numpy as np
462463

463464
dataset_path = "sample-imagenet-images"
464465
image_paths = sorted([os.path.join(dataset_path, x) for x in os.listdir(dataset_path)])
@@ -477,6 +478,7 @@ Now that the images are loaded, let's apply some lightweight pre-processing on t
477478

478479
```python
479480
from torchvision.transforms import functional as F
481+
import torch
480482

481483

482484
def preprocess_image(image):
@@ -498,6 +500,10 @@ dit_pipeline = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=
498500
dit_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(dit_pipeline.scheduler.config)
499501
dit_pipeline = dit_pipeline.to("cuda")
500502

503+
seed = 0
504+
generator = torch.manual_seed(seed)
505+
506+
501507
words = [
502508
"cassette player",
503509
"chainsaw",

โ€Ždocs/source/en/training/create_dataset.mdโ€Ž

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Create a dataset for training
22

3-
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the ๐Ÿค— [Datasets](hf.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
3+
There are many datasets on the [Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) to train a model on, but if you can't find one you're interested in or want to use your own, you can create a dataset with the ๐Ÿค— [Datasets](https://huggingface.co/docs/datasets) library. The dataset structure depends on the task you want to train your model on. The most basic dataset structure is a directory of images for tasks like unconditional image generation. Another dataset structure may be a directory of images and a text file containing their corresponding text captions for tasks like text-to-image generation.
44

55
This guide will show you two ways to create a dataset to finetune on:
66

@@ -87,4 +87,4 @@ accelerate launch --mixed_precision="fp16" train_text_to_image.py \
8787

8888
Now that you've created a dataset, you can plug it into the `train_data_dir` (if your dataset is local) or `dataset_name` (if your dataset is on the Hub) arguments of a training script.
8989

90-
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!
90+
For your next steps, feel free to try and use your dataset to train a model for [unconditional generation](unconditional_training) or [text-to-image generation](text2image)!

โ€Ždocs/source/en/tutorials/basic_training.mdโ€Ž

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@ For convenience, create a `TrainingConfig` class containing the training hyperpa
7575

7676
... push_to_hub = True # whether to upload the saved model to the HF Hub
7777
... hub_model_id = "<your-username>/<my-awesome-model>" # the name of the repository to create on the HF Hub
78-
... hub_private_repo = False
78+
... hub_private_repo = None
7979
... overwrite_output_dir = True # overwrite the old model when re-running the notebook
8080
... seed = 0
8181

โ€Ždocs/source/ko/api/pipelines/stable_diffusion/stable_diffusion_xl.mdโ€Ž

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@ image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, num_inferen
121121

122122
### ์ด๋ฏธ์ง€ ๊ฒฐ๊ณผ๋ฌผ์„ ์ •์ œํ•˜๊ธฐ
123123

124-
[base ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)์—์„œ, StableDiffusion-XL ๋˜ํ•œ ๊ณ ์ฃผํŒŒ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋‚ฎ์€ ๋…ธ์ด์ฆˆ ๋‹จ๊ณ„ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ฑฐํ•˜๋Š”๋ฐ ํŠนํ™”๋œ [refiner ์ฒดํฌํฌ์ธํŠธ](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด refiner ์ฒดํฌํฌ์ธํŠธ๋Š” ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด base ์ฒดํฌํฌ์ธํŠธ๋ฅผ ์‹คํ–‰ํ•œ ํ›„ "๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„" ํŒŒ์ดํ”„๋ผ์ธ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
124+
[base ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)์—์„œ, StableDiffusion-XL ๋˜ํ•œ ๊ณ ์ฃผํŒŒ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋‚ฎ์€ ๋…ธ์ด์ฆˆ ๋‹จ๊ณ„ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ฑฐํ•˜๋Š”๋ฐ ํŠนํ™”๋œ [refiner ์ฒดํฌํฌ์ธํŠธ](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด refiner ์ฒดํฌํฌ์ธํŠธ๋Š” ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด base ์ฒดํฌํฌ์ธํŠธ๋ฅผ ์‹คํ–‰ํ•œ ํ›„ "๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„" ํŒŒ์ดํ”„๋ผ์ธ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
125125

126126
refiner๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ, ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค
127127
- 1.) base ๋ชจ๋ธ๊ณผ refiner์„ ์‚ฌ์šฉํ•˜๋Š”๋ฐ, ์ด๋Š” *Denoisers์˜ ์•™์ƒ๋ธ”*์„ ์œ„ํ•œ ์ฒซ ๋ฒˆ์งธ ์ œ์•ˆ๋œ [eDiff-I](https://research.nvidia.com/labs/dir/eDiff-I/)๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜
@@ -215,7 +215,7 @@ image = refiner(
215215

216216
#### 2.) ๋…ธ์ด์ฆˆ๊ฐ€ ์™„์ „ํžˆ ์ œ๊ฑฐ๋œ ๊ธฐ๋ณธ ์ด๋ฏธ์ง€์—์„œ ์ด๋ฏธ์ง€ ์ถœ๋ ฅ์„ ์ •์ œํ•˜๊ธฐ
217217

218-
์ผ๋ฐ˜์ ์ธ [`StableDiffusionImg2ImgPipeline`] ๋ฐฉ์‹์—์„œ, ๊ธฐ๋ณธ ๋ชจ๋ธ์—์„œ ์ƒ์„ฑ๋œ ์™„์ „ํžˆ ๋…ธ์ด์ฆˆ๊ฐ€ ์ œ๊ฑฐ๋œ ์ด๋ฏธ์ง€๋Š” [refiner checkpoint](huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)๋ฅผ ์‚ฌ์šฉํ•ด ๋” ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
218+
์ผ๋ฐ˜์ ์ธ [`StableDiffusionImg2ImgPipeline`] ๋ฐฉ์‹์—์„œ, ๊ธฐ๋ณธ ๋ชจ๋ธ์—์„œ ์ƒ์„ฑ๋œ ์™„์ „ํžˆ ๋…ธ์ด์ฆˆ๊ฐ€ ์ œ๊ฑฐ๋œ ์ด๋ฏธ์ง€๋Š” [refiner checkpoint](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)๋ฅผ ์‚ฌ์šฉํ•ด ๋” ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
219219

220220
์ด๋ฅผ ์œ„ํ•ด, ๋ณดํ†ต์˜ "base" text-to-image ํŒŒ์ดํ”„๋ผ์ธ์„ ์ˆ˜ํ–‰ ํ›„์— image-to-image ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ์จ refiner๋ฅผ ์‹คํ–‰์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. base ๋ชจ๋ธ์˜ ์ถœ๋ ฅ์„ ์ž ์žฌ ๊ณต๊ฐ„์— ๋‚จ๊ฒจ๋‘˜ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
221221

โ€Ždocs/source/ko/training/create_dataset.mdโ€Ž

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# ํ•™์Šต์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹ ๋งŒ๋“ค๊ธฐ
22

33
[Hub](https://huggingface.co/datasets?task_categories=task_categories:text-to-image&sort=downloads) ์—๋Š” ๋ชจ๋ธ ๊ต์œก์„ ์œ„ํ•œ ๋งŽ์€ ๋ฐ์ดํ„ฐ์…‹์ด ์žˆ์ง€๋งŒ,
4-
๊ด€์‹ฌ์ด ์žˆ๊ฑฐ๋‚˜ ์‚ฌ์šฉํ•˜๊ณ  ์‹ถ์€ ๋ฐ์ดํ„ฐ์…‹์„ ์ฐพ์„ ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ ๐Ÿค— [Datasets](hf.co/docs/datasets) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
4+
๊ด€์‹ฌ์ด ์žˆ๊ฑฐ๋‚˜ ์‚ฌ์šฉํ•˜๊ณ  ์‹ถ์€ ๋ฐ์ดํ„ฐ์…‹์„ ์ฐพ์„ ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ ๐Ÿค— [Datasets](https://huggingface.co/docs/datasets) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ์…‹์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
55
๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์กฐ๋Š” ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋ ค๋Š” ์ž‘์—…์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค.
66
๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์กฐ๋Š” unconditional ์ด๋ฏธ์ง€ ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์ž‘์—…์„ ์œ„ํ•œ ์ด๋ฏธ์ง€ ๋””๋ ‰ํ† ๋ฆฌ์ž…๋‹ˆ๋‹ค.
77
๋˜ ๋‹ค๋ฅธ ๋ฐ์ดํ„ฐ์…‹ ๊ตฌ์กฐ๋Š” ์ด๋ฏธ์ง€ ๋””๋ ‰ํ† ๋ฆฌ์™€ text-to-image ์ƒ์„ฑ๊ณผ ๊ฐ™์€ ์ž‘์—…์— ํ•ด๋‹นํ•˜๋Š” ํ…์ŠคํŠธ ์บก์…˜์ด ํฌํ•จ๋œ ํ…์ŠคํŠธ ํŒŒ์ผ์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

0 commit comments

Comments
ย (0)