Skip to content

Commit 1b64772

Browse files
authored
Fix schedule_shifted_power usage in 🪆Matryoshka Diffusion Models (#9723)
* [matryoshka.py] Add schedule_shifted_power attribute and update get_schedule_shifted method
1 parent 2d280f1 commit 1b64772

File tree

2 files changed

+21
-18
lines changed

2 files changed

+21
-18
lines changed

‎examples/community/README.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4336,19 +4336,19 @@ The Abstract of the paper:
43364336

43374337
**64x64**
43384338
:-------------------------:
4339-
| <img src="https://github.com/user-attachments/assets/9e7bb2cd-45a0-4bd1-adb8-23e283baed39" width="222" height="222" alt="bird_64"> |
4339+
| <img src="https://github.com/user-attachments/assets/032738eb-c6cd-4fd9-b4d7-a7317b4b6528" width="222" height="222" alt="bird_64_64"> |
43404340

43414341
- `256×256, nesting_level=1`: 1.776 GiB. With `150` DDIM inference steps:
43424342

43434343
**64x64** | **256x256**
43444344
:-------------------------:|:-------------------------:
4345-
| <img src="https://github.com/user-attachments/assets/6b724c2e-5e6a-4b63-9b65-c1182cbb67e0" width="222" height="222" alt="64x64"> | <img src="https://github.com/user-attachments/assets/7dbab2ad-bf40-4a73-ab04-f178347cb7d5" width="222" height="222" alt="256x256"> |
4345+
| <img src="https://github.com/user-attachments/assets/21b9ad8b-eea6-4603-80a2-31180f391589" width="222" height="222" alt="bird_256_64"> | <img src="https://github.com/user-attachments/assets/fc411682-8a36-422c-9488-395b77d4406e" width="222" height="222" alt="bird_256_256"> |
43464346

4347-
- `1024×1024, nesting_level=2`: 1.792 GiB. As one can realize the cost of adding another layer is really negligible. With `250` DDIM inference steps:
4347+
- `1024×1024, nesting_level=2`: 1.792 GiB. As one can realize the cost of adding another layer is really negligible in this context! With `250` DDIM inference steps:
43484348

43494349
**64x64** | **256x256** | **1024x1024**
43504350
:-------------------------:|:-------------------------:|:-------------------------:
4351-
| <img src="https://github.com/user-attachments/assets/4a9454e4-e20a-4736-a196-270e2ae796c0" width="222" height="222" alt="64x64"> | <img src="https://github.com/user-attachments/assets/4a96555d-0fda-4303-82b1-a4d886f770b9" width="222" height="222" alt="256x256"> | <img src="https://github.com/user-attachments/assets/e0239b7a-ab73-4d45-8f3e-b4e6b4b50abe" width="222" height="222" alt="1024x1024"> |
4351+
| <img src="https://github.com/user-attachments/assets/febf4b98-3dee-4a8e-9946-fd42e1f232e6" width="222" height="222" alt="bird_1024_64"> | <img src="https://github.com/user-attachments/assets/c5f85b40-5d6d-4267-a92a-c89dff015b9b" width="222" height="222" alt="bird_1024_256"> | <img src="https://github.com/user-attachments/assets/ad66b913-4367-4cb9-889e-bc06f4d96148" width="222" height="222" alt="bird_1024_1024"> |
43524352

43534353
```py
43544354
from diffusers import DiffusionPipeline
@@ -4362,8 +4362,7 @@ pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-model
43624362

43634363
prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
43644364
prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
4365-
negative_prompt = "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy"
4366-
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=50).images
4365+
image = pipe(prompt, num_inference_steps=50).images
43674366
make_image_grid(image, rows=1, cols=len(image))
43684367

43694368
# pipe.change_nesting_level(<int>) # 0, 1, or 2

‎examples/community/matryoshka.py

Lines changed: 16 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -107,15 +107,16 @@
107107
108108
>>> # nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
109109
>>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
110-
>>> custom_pipeline="matryoshka").to("cuda")
110+
... nesting_level=0,
111+
... trust_remote_code=False, # One needs to give permission for this code to run
112+
... ).to("cuda")
111113
112114
>>> prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
113115
>>> prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
114-
>>> negative_prompt = "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy"
115-
>>> image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=50).images
116+
>>> image = pipe(prompt, num_inference_steps=50).images
116117
>>> make_image_grid(image, rows=1, cols=len(image))
117118
118-
>>> pipe.change_nesting_level(<int>) # 0, 1, or 2
119+
>>> # pipe.change_nesting_level(<int>) # 0, 1, or 2
119120
>>> # 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
120121
```
121122
"""
@@ -420,6 +421,7 @@ def __init__(
420421
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
421422

422423
self.scales = None
424+
self.schedule_shifted_power = 1.0
423425

424426
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
425427
"""
@@ -532,6 +534,7 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic
532534

533535
def get_schedule_shifted(self, alpha_prod, scale_factor=None):
534536
if (scale_factor is not None) and (scale_factor > 1): # rescale noise schedule
537+
scale_factor = scale_factor**self.schedule_shifted_power
535538
snr = alpha_prod / (1 - alpha_prod)
536539
scaled_snr = snr / scale_factor
537540
alpha_prod = 1 / (1 + 1 / scaled_snr)
@@ -639,17 +642,14 @@ def step(
639642
# 4. Clip or threshold "predicted x_0"
640643
if self.config.thresholding:
641644
if len(model_output) > 1:
642-
pred_original_sample = [
643-
self._threshold_sample(p_o_s * scale) / scale
644-
for p_o_s, scale in zip(pred_original_sample, self.scales)
645-
]
645+
pred_original_sample = [self._threshold_sample(p_o_s) for p_o_s in pred_original_sample]
646646
else:
647647
pred_original_sample = self._threshold_sample(pred_original_sample)
648648
elif self.config.clip_sample:
649649
if len(model_output) > 1:
650650
pred_original_sample = [
651-
(p_o_s * scale).clamp(-self.config.clip_sample_range, self.config.clip_sample_range) / scale
652-
for p_o_s, scale in zip(pred_original_sample, self.scales)
651+
p_o_s.clamp(-self.config.clip_sample_range, self.config.clip_sample_range)
652+
for p_o_s in pred_original_sample
653653
]
654654
else:
655655
pred_original_sample = pred_original_sample.clamp(
@@ -3816,6 +3816,8 @@ def __init__(
38163816

38173817
if hasattr(unet, "nest_ratio"):
38183818
scheduler.scales = unet.nest_ratio + [1]
3819+
if nesting_level == 2:
3820+
scheduler.schedule_shifted_power = 2.0
38193821

38203822
self.register_modules(
38213823
text_encoder=text_encoder,
@@ -3842,12 +3844,14 @@ def change_nesting_level(self, nesting_level: int):
38423844
).to(self.device)
38433845
self.config.nesting_level = 1
38443846
self.scheduler.scales = self.unet.nest_ratio + [1]
3847+
self.scheduler.schedule_shifted_power = 1.0
38453848
elif nesting_level == 2:
38463849
self.unet = NestedUNet2DConditionModel.from_pretrained(
38473850
"tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_2"
38483851
).to(self.device)
38493852
self.config.nesting_level = 2
38503853
self.scheduler.scales = self.unet.nest_ratio + [1]
3854+
self.scheduler.schedule_shifted_power = 2.0
38513855
else:
38523856
raise ValueError("Currently, nesting levels 0, 1, and 2 are supported.")
38533857

@@ -4627,8 +4631,8 @@ def __call__(
46274631
image = latents
46284632

46294633
if self.scheduler.scales is not None:
4630-
for i, (img, scale) in enumerate(zip(image, self.scheduler.scales)):
4631-
image[i] = self.image_processor.postprocess(img * scale, output_type=output_type)[0]
4634+
for i, img in enumerate(image):
4635+
image[i] = self.image_processor.postprocess(img, output_type=output_type)[0]
46324636
else:
46334637
image = self.image_processor.postprocess(image, output_type=output_type)
46344638

0 commit comments

Comments
 (0)