Skip to content

Commit 26dcfd0

Browse files
committed
test
1 parent 4a4b058 commit 26dcfd0

File tree

1 file changed

+144
-41
lines changed

1 file changed

+144
-41
lines changed

src/diffusers/loaders/lora_pipeline.py

Lines changed: 144 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,7 @@
1616
from typing import Callable, Dict, List, Optional, Union
1717

1818
import torch
19+
import re
1920
from huggingface_hub.utils import validate_hf_hub_args
2021

2122
from ..utils import (
@@ -4805,50 +4806,152 @@ def lora_state_dict(
48054806
return state_dict
48064807

48074808
@classmethod
4808-
def _maybe_expand_t2v_lora_for_i2v(
4809-
cls,
4810-
transformer: torch.nn.Module,
4811-
state_dict,
4812-
):
4813-
if transformer.config.image_dim is None:
4814-
return state_dict
4809+
def _modified_maybe_expand_t2v_lora( # Renamed for clarity
4810+
# cls, # if it were a classmethod
4811+
transformer: torch.nn.Module,
4812+
state_dict: Dict[str, torch.Tensor],
4813+
lora_filename_for_rank_inference: Optional[str] = None # Optional: for rank hint
4814+
) -> Dict[str, torch.Tensor]:
48154815

48164816
target_device = transformer.device
4817+
# Default dtype from transformer, can be refined if LoRA weights have a different one
4818+
lora_weights_dtype = next(iter(transformer.parameters())).dtype
4819+
4820+
# --- Infer LoRA rank and potentially refine dtype from existing LoRA weights ---
4821+
inferred_rank = None
4822+
if state_dict: # If LoRA state_dict already has entries from the T2V LoRA
4823+
for k, v_tensor in state_dict.items():
4824+
if k.endswith(".lora_A.weight"): # Standard LoRA weight key part
4825+
inferred_rank = v_tensor.shape[0] # rank is the output dim of lora_A
4826+
lora_weights_dtype = v_tensor.dtype # Use dtype of existing LoRA weights
4827+
break # Found rank and dtype
4828+
4829+
if inferred_rank is None and lora_filename_for_rank_inference:
4830+
match = re.search(r"rank(\d+)", lora_filename_for_rank_inference, re.IGNORECASE)
4831+
if match:
4832+
inferred_rank = int(match.group(1))
4833+
print(f"INFO: Inferred LoRA rank {inferred_rank} from filename for padding.")
4834+
4835+
# Determine if the original LoRA format (the T2V part) uses biases for lora_B
4836+
lora_format_has_bias = any(".lora_B.bias" in k for k in state_dict.keys())
4837+
4838+
# --- Part 1: Original I2V expansion for standard transformer.blocks ---
4839+
# (Assuming transformer.config and transformer.blocks structure for this part)
4840+
if hasattr(transformer, 'config') and hasattr(transformer.config, 'image_dim') and \
4841+
transformer.config.image_dim is not None and hasattr(transformer, 'blocks'):
4842+
4843+
standard_block_keys_present = any(k.startswith("transformer.blocks.") for k in state_dict)
4844+
4845+
if standard_block_keys_present and inferred_rank is not None:
4846+
num_blocks_in_lora = 0
4847+
block_indices = set()
4848+
for k_lora in state_dict:
4849+
if "transformer.blocks." in k_lora:
4850+
try:
4851+
block_idx_str = k_lora.split("transformer.blocks.")[1].split(".")[0]
4852+
if block_idx_str.isdigit():
4853+
block_indices.add(int(block_idx_str))
4854+
except IndexError:
4855+
pass
4856+
if block_indices:
4857+
num_blocks_in_lora = max(block_indices) + 1
4858+
4859+
is_i2v_lora_standard_blocks = any(
4860+
k.startswith("transformer.blocks.") and "add_k_proj" in k for k in state_dict
4861+
) and any(
4862+
k.startswith("transformer.blocks.") and "add_v_proj" in k for k in state_dict
4863+
)
48174864

4818-
if any(k.startswith("transformer.blocks.") for k in state_dict):
4819-
num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in state_dict if "blocks." in k})
4820-
is_i2v_lora = any("add_k_proj" in k for k in state_dict) and any("add_v_proj" in k for k in state_dict)
4821-
has_bias = any(".lora_B.bias" in k for k in state_dict)
4822-
4823-
if is_i2v_lora:
4824-
return state_dict
4825-
4826-
for i in range(num_blocks):
4827-
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
4828-
# These keys should exist if the block `i` was part of the T2V LoRA.
4829-
ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
4830-
ref_key_lora_B = f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"
4831-
4832-
if ref_key_lora_A not in state_dict or ref_key_lora_B not in state_dict:
4833-
continue
4834-
4835-
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_A.weight"] = torch.zeros_like(
4836-
state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"], device=target_device
4837-
)
4838-
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.weight"] = torch.zeros_like(
4839-
state_dict[f"transformer.blocks.{i}.attn2.to_k.lora_B.weight"], device=target_device
4840-
)
4841-
4842-
# If the original LoRA had biases (indicated by has_bias)
4843-
# AND the specific reference bias key exists for this block.
4844-
4845-
ref_key_lora_B_bias = f"transformer.blocks.{i}.attn2.to_k.lora_B.bias"
4846-
if has_bias and ref_key_lora_B_bias in state_dict:
4847-
ref_lora_B_bias_tensor = state_dict[ref_key_lora_B_bias]
4848-
state_dict[f"transformer.blocks.{i}.attn2.{c}.lora_B.bias"] = torch.zeros_like(
4849-
ref_lora_B_bias_tensor,
4850-
device=target_device,
4851-
)
4865+
if not is_i2v_lora_standard_blocks and num_blocks_in_lora > 0:
4866+
print(f"INFO: Expanding T2V LoRA for I2V compatibility (standard blocks). Rank: {inferred_rank}")
4867+
for i in range(num_blocks_in_lora):
4868+
# Check if block 'i' relevant parts are in the T2V LoRA
4869+
ref_key_lora_A = f"transformer.blocks.{i}.attn2.to_k.lora_A.weight"
4870+
if ref_key_lora_A not in state_dict:
4871+
continue # This block's specific part wasn't in the LoRA.
4872+
4873+
try:
4874+
model_block = transformer.blocks[i]
4875+
# Ensure these target layers exist in the model's standard block
4876+
if not (hasattr(model_block, 'attn2') and \
4877+
hasattr(model_block.attn2, 'add_k_proj') and \
4878+
hasattr(model_block.attn2, 'add_v_proj')):
4879+
continue
4880+
add_k_proj_layer = model_block.attn2.add_k_proj
4881+
add_v_proj_layer = model_block.attn2.add_v_proj
4882+
except (AttributeError, IndexError):
4883+
print(f"WARN: Cannot access standard block {i} or its I2V layers for expansion.")
4884+
continue
4885+
4886+
for proj_name_suffix, model_linear_layer in [("add_k_proj", add_k_proj_layer),
4887+
("add_v_proj", add_v_proj_layer)]:
4888+
if not isinstance(model_linear_layer, nn.Linear): continue
4889+
4890+
lora_A_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_A.weight"
4891+
lora_B_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_B.weight"
4892+
4893+
if lora_A_key not in state_dict:
4894+
state_dict[lora_A_key] = torch.zeros(
4895+
(inferred_rank, model_linear_layer.in_features),
4896+
device=target_device, dtype=lora_weights_dtype
4897+
)
4898+
if lora_B_key not in state_dict:
4899+
state_dict[lora_B_key] = torch.zeros(
4900+
(model_linear_layer.out_features, inferred_rank),
4901+
device=target_device, dtype=lora_weights_dtype
4902+
)
4903+
4904+
if lora_format_has_bias and model_linear_layer.bias is not None:
4905+
lora_B_bias_key = f"transformer.blocks.{i}.attn2.{proj_name_suffix}.lora_B.bias"
4906+
if lora_B_bias_key not in state_dict:
4907+
state_dict[lora_B_bias_key] = torch.zeros_like(
4908+
model_linear_layer.bias, device=target_device,
4909+
dtype=model_linear_layer.bias.dtype
4910+
)
4911+
elif inferred_rank is None:
4912+
print("INFO: LoRA rank not inferred. Skipping I2V expansion for standard blocks.")
4913+
# else: not standard_block_keys_present or no I2V capability.
4914+
4915+
# --- Part 2: Pad LoRA for WanVACETransformer3DModel vace_blocks.X.proj_out ---
4916+
# Dynamically check for WanVACETransformer3DModel availability for isinstance
4917+
VACEModelClass = globals().get("WanVACETransformer3DModel")
4918+
4919+
if VACEModelClass and isinstance(transformer, VACEModelClass) and hasattr(transformer, 'vace_blocks'):
4920+
if inferred_rank is None:
4921+
print("WARNING: LoRA rank not determined. Skipping VACE block padding for proj_out.")
4922+
else:
4923+
print(f"INFO: Transformer is WanVACE. Padding LoRA for vace_blocks.X.proj_out. Rank: {inferred_rank}")
4924+
for i, vace_block_module in enumerate(transformer.vace_blocks):
4925+
if hasattr(vace_block_module, 'proj_out') and isinstance(vace_block_module.proj_out, nn.Linear):
4926+
proj_out_layer = vace_block_module.proj_out
4927+
4928+
# Keys for the vace_block's proj_out LoRA layers
4929+
# These are the keys PEFT expects in the state_dict *before* adding adapter name context
4930+
lora_A_key = f"vace_blocks.{i}.proj_out.lora_A.weight"
4931+
lora_B_key = f"vace_blocks.{i}.proj_out.lora_B.weight"
4932+
4933+
if lora_A_key not in state_dict:
4934+
state_dict[lora_A_key] = torch.zeros(
4935+
(inferred_rank, proj_out_layer.in_features),
4936+
device=target_device, dtype=lora_weights_dtype
4937+
)
4938+
# print(f"Padded: {lora_A_key}")
4939+
4940+
if lora_B_key not in state_dict:
4941+
state_dict[lora_B_key] = torch.zeros(
4942+
(proj_out_layer.out_features, inferred_rank),
4943+
device=target_device, dtype=lora_weights_dtype
4944+
)
4945+
# print(f"Padded: {lora_B_key}")
4946+
4947+
if lora_format_has_bias and proj_out_layer.bias is not None:
4948+
lora_B_bias_key = f"vace_blocks.{i}.proj_out.lora_B.bias"
4949+
if lora_B_bias_key not in state_dict:
4950+
state_dict[lora_B_bias_key] = torch.zeros_like(
4951+
proj_out_layer.bias, device=target_device, dtype=proj_out_layer.bias.dtype
4952+
)
4953+
# print(f"Padded: {lora_B_bias_key}")
4954+
# else: VACE block 'i' might not have proj_out or it's not Linear.
48524955

48534956
return state_dict
48544957

0 commit comments

Comments
 (0)