Skip to content

Commit 299a646

Browse files
committed
[REMOVE] Delete frozen_clip_embedder_t3.py as it is in the anytext.py file
1 parent 3ea49c1 commit 299a646

File tree

2 files changed

+216
-215
lines changed

2 files changed

+216
-215
lines changed

examples/research_projects/anytext/anytext.py

Lines changed: 216 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,6 @@
3535
import torch
3636
import torch.nn.functional as F
3737
from easydict import EasyDict as edict
38-
from frozen_clip_embedder_t3 import FrozenCLIPEmbedderT3
3938
from huggingface_hub import hf_hub_download
4039
from ocr_recog.RecModel import RecModel
4140
from PIL import Image, ImageDraw, ImageFont
@@ -520,6 +519,222 @@ def get_ctcloss(self, preds, gt_text, weight):
520519
return loss
521520

522521

522+
import torch
523+
from torch import nn
524+
from transformers import CLIPTextModel, CLIPTokenizer
525+
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
526+
527+
528+
class AbstractEncoder(nn.Module):
529+
def __init__(self):
530+
super().__init__()
531+
532+
def encode(self, *args, **kwargs):
533+
raise NotImplementedError
534+
535+
536+
class FrozenCLIPEmbedderT3(AbstractEncoder):
537+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
538+
539+
def __init__(
540+
self,
541+
version="openai/clip-vit-large-patch14",
542+
device="cpu",
543+
max_length=77,
544+
freeze=True,
545+
use_fp16=False,
546+
):
547+
super().__init__()
548+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
549+
self.transformer = CLIPTextModel.from_pretrained(
550+
version, use_safetensors=True, torch_dtype=torch.float16 if use_fp16 else torch.float32
551+
).to(device)
552+
self.device = device
553+
self.max_length = max_length
554+
if freeze:
555+
self.freeze()
556+
557+
def embedding_forward(
558+
self,
559+
input_ids=None,
560+
position_ids=None,
561+
inputs_embeds=None,
562+
embedding_manager=None,
563+
):
564+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
565+
if position_ids is None:
566+
position_ids = self.position_ids[:, :seq_length]
567+
if inputs_embeds is None:
568+
inputs_embeds = self.token_embedding(input_ids)
569+
if embedding_manager is not None:
570+
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
571+
position_embeddings = self.position_embedding(position_ids)
572+
embeddings = inputs_embeds + position_embeddings
573+
return embeddings
574+
575+
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(
576+
self.transformer.text_model.embeddings
577+
)
578+
579+
def encoder_forward(
580+
self,
581+
inputs_embeds,
582+
attention_mask=None,
583+
causal_attention_mask=None,
584+
output_attentions=None,
585+
output_hidden_states=None,
586+
return_dict=None,
587+
):
588+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
589+
output_hidden_states = (
590+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
591+
)
592+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
593+
encoder_states = () if output_hidden_states else None
594+
all_attentions = () if output_attentions else None
595+
hidden_states = inputs_embeds
596+
for idx, encoder_layer in enumerate(self.layers):
597+
if output_hidden_states:
598+
encoder_states = encoder_states + (hidden_states,)
599+
layer_outputs = encoder_layer(
600+
hidden_states,
601+
attention_mask,
602+
causal_attention_mask,
603+
output_attentions=output_attentions,
604+
)
605+
hidden_states = layer_outputs[0]
606+
if output_attentions:
607+
all_attentions = all_attentions + (layer_outputs[1],)
608+
if output_hidden_states:
609+
encoder_states = encoder_states + (hidden_states,)
610+
return hidden_states
611+
612+
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
613+
614+
def text_encoder_forward(
615+
self,
616+
input_ids=None,
617+
attention_mask=None,
618+
position_ids=None,
619+
output_attentions=None,
620+
output_hidden_states=None,
621+
return_dict=None,
622+
embedding_manager=None,
623+
):
624+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
625+
output_hidden_states = (
626+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
627+
)
628+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
629+
if input_ids is None:
630+
raise ValueError("You have to specify either input_ids")
631+
input_shape = input_ids.size()
632+
input_ids = input_ids.view(-1, input_shape[-1])
633+
hidden_states = self.embeddings(
634+
input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager
635+
)
636+
# CLIP's text model uses causal mask, prepare it here.
637+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
638+
causal_attention_mask = _create_4d_causal_attention_mask(
639+
input_shape, hidden_states.dtype, device=hidden_states.device
640+
)
641+
# expand attention_mask
642+
if attention_mask is not None:
643+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
644+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
645+
last_hidden_state = self.encoder(
646+
inputs_embeds=hidden_states,
647+
attention_mask=attention_mask,
648+
causal_attention_mask=causal_attention_mask,
649+
output_attentions=output_attentions,
650+
output_hidden_states=output_hidden_states,
651+
return_dict=return_dict,
652+
)
653+
last_hidden_state = self.final_layer_norm(last_hidden_state)
654+
return last_hidden_state
655+
656+
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
657+
658+
def transformer_forward(
659+
self,
660+
input_ids=None,
661+
attention_mask=None,
662+
position_ids=None,
663+
output_attentions=None,
664+
output_hidden_states=None,
665+
return_dict=None,
666+
embedding_manager=None,
667+
):
668+
return self.text_model(
669+
input_ids=input_ids,
670+
attention_mask=attention_mask,
671+
position_ids=position_ids,
672+
output_attentions=output_attentions,
673+
output_hidden_states=output_hidden_states,
674+
return_dict=return_dict,
675+
embedding_manager=embedding_manager,
676+
)
677+
678+
self.transformer.forward = transformer_forward.__get__(self.transformer)
679+
680+
def freeze(self):
681+
self.transformer = self.transformer.eval()
682+
for param in self.parameters():
683+
param.requires_grad = False
684+
685+
def forward(self, text, **kwargs):
686+
batch_encoding = self.tokenizer(
687+
text,
688+
truncation=False,
689+
max_length=self.max_length,
690+
return_length=True,
691+
return_overflowing_tokens=False,
692+
padding="longest",
693+
return_tensors="pt",
694+
)
695+
input_ids = batch_encoding["input_ids"]
696+
tokens_list = self.split_chunks(input_ids)
697+
z_list = []
698+
for tokens in tokens_list:
699+
tokens = tokens.to(self.device)
700+
_z = self.transformer(input_ids=tokens, **kwargs)
701+
z_list += [_z]
702+
return torch.cat(z_list, dim=1)
703+
704+
def encode(self, text, **kwargs):
705+
return self(text, **kwargs)
706+
707+
def split_chunks(self, input_ids, chunk_size=75):
708+
tokens_list = []
709+
bs, n = input_ids.shape
710+
id_start = input_ids[:, 0].unsqueeze(1) # dim --> [bs, 1]
711+
id_end = input_ids[:, -1].unsqueeze(1)
712+
if n == 2: # empty caption
713+
tokens_list.append(torch.cat((id_start,) + (id_end,) * (chunk_size + 1), dim=1))
714+
715+
trimmed_encoding = input_ids[:, 1:-1]
716+
num_full_groups = (n - 2) // chunk_size
717+
718+
for i in range(num_full_groups):
719+
group = trimmed_encoding[:, i * chunk_size : (i + 1) * chunk_size]
720+
group_pad = torch.cat((id_start, group, id_end), dim=1)
721+
tokens_list.append(group_pad)
722+
723+
remaining_columns = (n - 2) % chunk_size
724+
if remaining_columns > 0:
725+
remaining_group = trimmed_encoding[:, -remaining_columns:]
726+
padding_columns = chunk_size - remaining_group.shape[1]
727+
padding = id_end.expand(bs, padding_columns)
728+
remaining_group_pad = torch.cat((id_start, remaining_group, padding, id_end), dim=1)
729+
tokens_list.append(remaining_group_pad)
730+
return tokens_list
731+
732+
def to(self, *args, **kwargs):
733+
self.transformer = self.transformer.to(*args, **kwargs)
734+
self.device = self.transformer.device
735+
return self
736+
737+
523738
class TextEmbeddingModule(nn.Module):
524739
def __init__(self, font_path, use_fp16=False, device="cpu"):
525740
super().__init__()

0 commit comments

Comments
 (0)