|
| 1 | +#!/usr/bin/env python |
| 2 | +# coding=utf-8 |
| 3 | +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | + |
| 16 | +import argparse |
| 17 | +import typing |
| 18 | +from typing import Optional, Union |
| 19 | + |
| 20 | +import torch |
| 21 | +from PIL import Image |
| 22 | +from torchvision import transforms # type: ignore |
| 23 | + |
| 24 | +from diffusers.image_processor import VaeImageProcessor |
| 25 | +from diffusers.models.autoencoders.autoencoder_kl import ( |
| 26 | + AutoencoderKL, |
| 27 | + AutoencoderKLOutput, |
| 28 | +) |
| 29 | +from diffusers.models.autoencoders.autoencoder_tiny import ( |
| 30 | + AutoencoderTiny, |
| 31 | + AutoencoderTinyOutput, |
| 32 | +) |
| 33 | +from diffusers.models.autoencoders.vae import DecoderOutput |
| 34 | + |
| 35 | + |
| 36 | +SupportedAutoencoder = Union[AutoencoderKL, AutoencoderTiny] |
| 37 | + |
| 38 | + |
| 39 | +def load_vae_model( |
| 40 | + *, |
| 41 | + device: torch.device, |
| 42 | + model_name_or_path: str, |
| 43 | + revision: Optional[str], |
| 44 | + variant: Optional[str], |
| 45 | + # NOTE: use subfolder="vae" if the pointed model is for stable diffusion as a whole instead of just the VAE |
| 46 | + subfolder: Optional[str], |
| 47 | + use_tiny_nn: bool, |
| 48 | +) -> SupportedAutoencoder: |
| 49 | + if use_tiny_nn: |
| 50 | + # NOTE: These scaling factors don't have to be the same as each other. |
| 51 | + down_scale = 2 |
| 52 | + up_scale = 2 |
| 53 | + vae = AutoencoderTiny.from_pretrained( # type: ignore |
| 54 | + model_name_or_path, |
| 55 | + subfolder=subfolder, |
| 56 | + revision=revision, |
| 57 | + variant=variant, |
| 58 | + downscaling_scaling_factor=down_scale, |
| 59 | + upsampling_scaling_factor=up_scale, |
| 60 | + ) |
| 61 | + assert isinstance(vae, AutoencoderTiny) |
| 62 | + else: |
| 63 | + vae = AutoencoderKL.from_pretrained( # type: ignore |
| 64 | + model_name_or_path, |
| 65 | + subfolder=subfolder, |
| 66 | + revision=revision, |
| 67 | + variant=variant, |
| 68 | + ) |
| 69 | + assert isinstance(vae, AutoencoderKL) |
| 70 | + vae = vae.to(device) |
| 71 | + vae.eval() # Set the model to inference mode |
| 72 | + return vae |
| 73 | + |
| 74 | + |
| 75 | +def pil_to_nhwc( |
| 76 | + *, |
| 77 | + device: torch.device, |
| 78 | + image: Image.Image, |
| 79 | +) -> torch.Tensor: |
| 80 | + assert image.mode == "RGB" |
| 81 | + transform = transforms.ToTensor() |
| 82 | + nhwc = transform(image).unsqueeze(0).to(device) # type: ignore |
| 83 | + assert isinstance(nhwc, torch.Tensor) |
| 84 | + return nhwc |
| 85 | + |
| 86 | + |
| 87 | +def nhwc_to_pil( |
| 88 | + *, |
| 89 | + nhwc: torch.Tensor, |
| 90 | +) -> Image.Image: |
| 91 | + assert nhwc.shape[0] == 1 |
| 92 | + hwc = nhwc.squeeze(0).cpu() |
| 93 | + return transforms.ToPILImage()(hwc) # type: ignore |
| 94 | + |
| 95 | + |
| 96 | +def concatenate_images( |
| 97 | + *, |
| 98 | + left: Image.Image, |
| 99 | + right: Image.Image, |
| 100 | + vertical: bool = False, |
| 101 | +) -> Image.Image: |
| 102 | + width1, height1 = left.size |
| 103 | + width2, height2 = right.size |
| 104 | + if vertical: |
| 105 | + total_height = height1 + height2 |
| 106 | + max_width = max(width1, width2) |
| 107 | + new_image = Image.new("RGB", (max_width, total_height)) |
| 108 | + new_image.paste(left, (0, 0)) |
| 109 | + new_image.paste(right, (0, height1)) |
| 110 | + else: |
| 111 | + total_width = width1 + width2 |
| 112 | + max_height = max(height1, height2) |
| 113 | + new_image = Image.new("RGB", (total_width, max_height)) |
| 114 | + new_image.paste(left, (0, 0)) |
| 115 | + new_image.paste(right, (width1, 0)) |
| 116 | + return new_image |
| 117 | + |
| 118 | + |
| 119 | +def to_latent( |
| 120 | + *, |
| 121 | + rgb_nchw: torch.Tensor, |
| 122 | + vae: SupportedAutoencoder, |
| 123 | +) -> torch.Tensor: |
| 124 | + rgb_nchw = VaeImageProcessor.normalize(rgb_nchw) # type: ignore |
| 125 | + encoding_nchw = vae.encode(typing.cast(torch.FloatTensor, rgb_nchw)) |
| 126 | + if isinstance(encoding_nchw, AutoencoderKLOutput): |
| 127 | + latent = encoding_nchw.latent_dist.sample() # type: ignore |
| 128 | + assert isinstance(latent, torch.Tensor) |
| 129 | + elif isinstance(encoding_nchw, AutoencoderTinyOutput): |
| 130 | + latent = encoding_nchw.latents |
| 131 | + do_internal_vae_scaling = False # Is this needed? |
| 132 | + if do_internal_vae_scaling: |
| 133 | + latent = vae.scale_latents(latent).mul(255).round().byte() # type: ignore |
| 134 | + latent = vae.unscale_latents(latent / 255.0) # type: ignore |
| 135 | + assert isinstance(latent, torch.Tensor) |
| 136 | + else: |
| 137 | + assert False, f"Unknown encoding type: {type(encoding_nchw)}" |
| 138 | + return latent |
| 139 | + |
| 140 | + |
| 141 | +def from_latent( |
| 142 | + *, |
| 143 | + latent_nchw: torch.Tensor, |
| 144 | + vae: SupportedAutoencoder, |
| 145 | +) -> torch.Tensor: |
| 146 | + decoding_nchw = vae.decode(latent_nchw) # type: ignore |
| 147 | + assert isinstance(decoding_nchw, DecoderOutput) |
| 148 | + rgb_nchw = VaeImageProcessor.denormalize(decoding_nchw.sample) # type: ignore |
| 149 | + assert isinstance(rgb_nchw, torch.Tensor) |
| 150 | + return rgb_nchw |
| 151 | + |
| 152 | + |
| 153 | +def main_kwargs( |
| 154 | + *, |
| 155 | + device: torch.device, |
| 156 | + input_image_path: str, |
| 157 | + pretrained_model_name_or_path: str, |
| 158 | + revision: Optional[str], |
| 159 | + variant: Optional[str], |
| 160 | + subfolder: Optional[str], |
| 161 | + use_tiny_nn: bool, |
| 162 | +) -> None: |
| 163 | + vae = load_vae_model( |
| 164 | + device=device, |
| 165 | + model_name_or_path=pretrained_model_name_or_path, |
| 166 | + revision=revision, |
| 167 | + variant=variant, |
| 168 | + subfolder=subfolder, |
| 169 | + use_tiny_nn=use_tiny_nn, |
| 170 | + ) |
| 171 | + original_pil = Image.open(input_image_path).convert("RGB") |
| 172 | + original_image = pil_to_nhwc( |
| 173 | + device=device, |
| 174 | + image=original_pil, |
| 175 | + ) |
| 176 | + print(f"Original image shape: {original_image.shape}") |
| 177 | + reconstructed_image: Optional[torch.Tensor] = None |
| 178 | + |
| 179 | + with torch.no_grad(): |
| 180 | + latent_image = to_latent(rgb_nchw=original_image, vae=vae) |
| 181 | + print(f"Latent shape: {latent_image.shape}") |
| 182 | + reconstructed_image = from_latent(latent_nchw=latent_image, vae=vae) |
| 183 | + reconstructed_pil = nhwc_to_pil(nhwc=reconstructed_image) |
| 184 | + combined_image = concatenate_images( |
| 185 | + left=original_pil, |
| 186 | + right=reconstructed_pil, |
| 187 | + vertical=False, |
| 188 | + ) |
| 189 | + combined_image.show("Original | Reconstruction") |
| 190 | + print(f"Reconstructed image shape: {reconstructed_image.shape}") |
| 191 | + |
| 192 | + |
| 193 | +def parse_args() -> argparse.Namespace: |
| 194 | + parser = argparse.ArgumentParser(description="Inference with VAE") |
| 195 | + parser.add_argument( |
| 196 | + "--input_image", |
| 197 | + type=str, |
| 198 | + required=True, |
| 199 | + help="Path to the input image for inference.", |
| 200 | + ) |
| 201 | + parser.add_argument( |
| 202 | + "--pretrained_model_name_or_path", |
| 203 | + type=str, |
| 204 | + required=True, |
| 205 | + help="Path to pretrained VAE model.", |
| 206 | + ) |
| 207 | + parser.add_argument( |
| 208 | + "--revision", |
| 209 | + type=str, |
| 210 | + default=None, |
| 211 | + help="Model version.", |
| 212 | + ) |
| 213 | + parser.add_argument( |
| 214 | + "--variant", |
| 215 | + type=str, |
| 216 | + default=None, |
| 217 | + help="Model file variant, e.g., 'fp16'.", |
| 218 | + ) |
| 219 | + parser.add_argument( |
| 220 | + "--subfolder", |
| 221 | + type=str, |
| 222 | + default=None, |
| 223 | + help="Subfolder in the model file.", |
| 224 | + ) |
| 225 | + parser.add_argument( |
| 226 | + "--use_cuda", |
| 227 | + action="store_true", |
| 228 | + help="Use CUDA if available.", |
| 229 | + ) |
| 230 | + parser.add_argument( |
| 231 | + "--use_tiny_nn", |
| 232 | + action="store_true", |
| 233 | + help="Use tiny neural network.", |
| 234 | + ) |
| 235 | + return parser.parse_args() |
| 236 | + |
| 237 | + |
| 238 | +# EXAMPLE USAGE: |
| 239 | +# |
| 240 | +# python vae_roundtrip.py --use_cuda --pretrained_model_name_or_path "runwayml/stable-diffusion-v1-5" --subfolder "vae" --input_image "foo.png" |
| 241 | +# |
| 242 | +# python vae_roundtrip.py --use_cuda --pretrained_model_name_or_path "madebyollin/taesd" --use_tiny_nn --input_image "foo.png" |
| 243 | +# |
| 244 | +def main_cli() -> None: |
| 245 | + args = parse_args() |
| 246 | + |
| 247 | + input_image_path = args.input_image |
| 248 | + assert isinstance(input_image_path, str) |
| 249 | + |
| 250 | + pretrained_model_name_or_path = args.pretrained_model_name_or_path |
| 251 | + assert isinstance(pretrained_model_name_or_path, str) |
| 252 | + |
| 253 | + revision = args.revision |
| 254 | + assert isinstance(revision, (str, type(None))) |
| 255 | + |
| 256 | + variant = args.variant |
| 257 | + assert isinstance(variant, (str, type(None))) |
| 258 | + |
| 259 | + subfolder = args.subfolder |
| 260 | + assert isinstance(subfolder, (str, type(None))) |
| 261 | + |
| 262 | + use_cuda = args.use_cuda |
| 263 | + assert isinstance(use_cuda, bool) |
| 264 | + |
| 265 | + use_tiny_nn = args.use_tiny_nn |
| 266 | + assert isinstance(use_tiny_nn, bool) |
| 267 | + |
| 268 | + device = torch.device("cuda" if use_cuda else "cpu") |
| 269 | + |
| 270 | + main_kwargs( |
| 271 | + device=device, |
| 272 | + input_image_path=input_image_path, |
| 273 | + pretrained_model_name_or_path=pretrained_model_name_or_path, |
| 274 | + revision=revision, |
| 275 | + variant=variant, |
| 276 | + subfolder=subfolder, |
| 277 | + use_tiny_nn=use_tiny_nn, |
| 278 | + ) |
| 279 | + |
| 280 | + |
| 281 | +if __name__ == "__main__": |
| 282 | + main_cli() |
0 commit comments