@@ -697,17 +697,22 @@ def collate_fn(examples):
697697 )
698698
699699 # Scheduler and math around the number of training steps.
700- overrode_max_train_steps = False
701- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
700+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
701+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
702702 if args .max_train_steps is None :
703- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
704- overrode_max_train_steps = True
703+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
704+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
705+ num_training_steps_for_scheduler = (
706+ args .num_train_epochs * num_update_steps_per_epoch * accelerator .num_processes
707+ )
708+ else :
709+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
705710
706711 lr_scheduler = get_scheduler (
707712 args .lr_scheduler ,
708713 optimizer = optimizer ,
709- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
710- num_training_steps = args . max_train_steps * accelerator . num_processes ,
714+ num_warmup_steps = num_warmup_steps_for_scheduler ,
715+ num_training_steps = num_training_steps_for_scheduler ,
711716 )
712717
713718 # Prepare everything with our `accelerator`.
@@ -717,8 +722,14 @@ def collate_fn(examples):
717722
718723 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
719724 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
720- if overrode_max_train_steps :
725+ if args . max_train_steps is None :
721726 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
727+ if num_training_steps_for_scheduler != args .max_train_steps * accelerator .num_processes :
728+ logger .warning (
729+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
730+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
731+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
732+ )
722733 # Afterwards we recalculate our number of training epochs
723734 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
724735
0 commit comments