Skip to content

Commit 378e412

Browse files
authored
Update pipeline_wan_i2v.py
1 parent ac15382 commit 378e412

File tree

1 file changed

+8
-24
lines changed

1 file changed

+8
-24
lines changed

src/diffusers/pipelines/wan/pipeline_wan_i2v.py

Lines changed: 8 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -108,34 +108,16 @@ def prompt_clean(text):
108108
return text
109109

110110

111+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
111112
def retrieve_latents(
112-
encoder_output: torch.Tensor,
113-
latents_mean: torch.Tensor,
114-
latents_std: torch.Tensor,
115-
generator: Optional[torch.Generator] = None,
116-
sample_mode: str = "argmax",
113+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
117114
):
118-
if hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
119-
return (encoder_output.latent_dist.mean - latents_mean) * latents_std
120-
else:
121-
raise AttributeError("Could not access latents of provided encoder_output")
122-
encoder_output.latent_dist.mean = (encoder_output.latent_dist.mean - latents_mean) * latents_std
123-
encoder_output.latent_dist.logvar = torch.clamp(
124-
(encoder_output.latent_dist.logvar - latents_mean) * latents_std, -30.0, 20.0
125-
)
126-
encoder_output.latent_dist.std = torch.exp(0.5 * encoder_output.latent_dist.logvar)
127-
encoder_output.latent_dist.var = torch.exp(encoder_output.latent_dist.logvar)
115+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
128116
return encoder_output.latent_dist.sample(generator)
129117
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
130-
encoder_output.latent_dist.mean = (encoder_output.latent_dist.mean - latents_mean) * latents_std
131-
encoder_output.latent_dist.logvar = torch.clamp(
132-
(encoder_output.latent_dist.logvar - latents_mean) * latents_std, -30.0, 20.0
133-
)
134-
encoder_output.latent_dist.std = torch.exp(0.5 * encoder_output.latent_dist.logvar)
135-
encoder_output.latent_dist.var = torch.exp(encoder_output.latent_dist.logvar)
136118
return encoder_output.latent_dist.mode()
137119
elif hasattr(encoder_output, "latents"):
138-
return (encoder_output.latents - latents_mean) * latents_std
120+
return encoder_output.latents
139121
else:
140122
raise AttributeError("Could not access latents of provided encoder_output")
141123

@@ -415,13 +397,15 @@ def prepare_latents(
415397

416398
if isinstance(generator, list):
417399
latent_condition = [
418-
retrieve_latents(self.vae.encode(video_condition), latents_mean, latents_std, g) for g in generator
400+
retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax") for _ in generator
419401
]
420402
latent_condition = torch.cat(latent_condition)
421403
else:
422-
latent_condition = retrieve_latents(self.vae.encode(video_condition), latents_mean, latents_std, generator)
404+
latent_condition = retrieve_latents(self.vae.encode(video_condition), sample_mode="argmax")
423405
latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)
424406

407+
latent_condition = (latent_condition - latents_mean) * latents_std
408+
425409
mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
426410
mask_lat_size[:, :, list(range(1, num_frames))] = 0
427411
first_frame_mask = mask_lat_size[:, :, 0:1]

0 commit comments

Comments
 (0)