Skip to content

Commit 3cc50f0

Browse files
authored
Merge branch 'main' into no-mmap
2 parents fec5753 + e12d610 commit 3cc50f0

33 files changed

+1689
-166
lines changed

docs/source/en/_toctree.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -238,6 +238,8 @@
238238
title: Textual Inversion
239239
- local: api/loaders/unet
240240
title: UNet
241+
- local: api/loaders/transformer_sd3
242+
title: SD3Transformer2D
241243
- local: api/loaders/peft
242244
title: PEFT
243245
title: Loaders

docs/source/en/api/attnprocessor.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -86,6 +86,8 @@ An attention processor is a class for applying different types of attention mech
8686

8787
[[autodoc]] models.attention_processor.IPAdapterAttnProcessor2_0
8888

89+
[[autodoc]] models.attention_processor.SD3IPAdapterJointAttnProcessor2_0
90+
8991
## JointAttnProcessor2_0
9092

9193
[[autodoc]] models.attention_processor.JointAttnProcessor2_0

docs/source/en/api/loaders/ip_adapter.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,12 @@ Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter [loading]
2424

2525
[[autodoc]] loaders.ip_adapter.IPAdapterMixin
2626

27+
## SD3IPAdapterMixin
28+
29+
[[autodoc]] loaders.ip_adapter.SD3IPAdapterMixin
30+
- all
31+
- is_ip_adapter_active
32+
2733
## IPAdapterMaskProcessor
2834

2935
[[autodoc]] image_processor.IPAdapterMaskProcessor
Lines changed: 29 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,29 @@
1+
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
2+
3+
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4+
the License. You may obtain a copy of the License at
5+
6+
http://www.apache.org/licenses/LICENSE-2.0
7+
8+
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9+
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10+
specific language governing permissions and limitations under the License.
11+
-->
12+
13+
# SD3Transformer2D
14+
15+
This class is useful when *only* loading weights into a [`SD3Transformer2DModel`]. If you need to load weights into the text encoder or a text encoder and SD3Transformer2DModel, check [`SD3LoraLoaderMixin`](lora#diffusers.loaders.SD3LoraLoaderMixin) class instead.
16+
17+
The [`SD3Transformer2DLoadersMixin`] class currently only loads IP-Adapter weights, but will be used in the future to save weights and load LoRAs.
18+
19+
<Tip>
20+
21+
To learn more about how to load LoRA weights, see the [LoRA](../../using-diffusers/loading_adapters#lora) loading guide.
22+
23+
</Tip>
24+
25+
## SD3Transformer2DLoadersMixin
26+
27+
[[autodoc]] loaders.transformer_sd3.SD3Transformer2DLoadersMixin
28+
- all
29+
- _load_ip_adapter_weights

docs/source/en/api/pipelines/flux.md

Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -268,6 +268,43 @@ images = pipe(
268268
images[0].save("flux-redux.png")
269269
```
270270

271+
## Combining Flux Turbo LoRAs with Flux Control, Fill, and Redux
272+
273+
We can combine Flux Turbo LoRAs with Flux Control and other pipelines like Fill and Redux to enable few-steps' inference. The example below shows how to do that for Flux Control LoRA for depth and turbo LoRA from [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD).
274+
275+
```py
276+
from diffusers import FluxControlPipeline
277+
from image_gen_aux import DepthPreprocessor
278+
from diffusers.utils import load_image
279+
from huggingface_hub import hf_hub_download
280+
import torch
281+
282+
control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
283+
control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora", adapter_name="depth")
284+
control_pipe.load_lora_weights(
285+
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
286+
)
287+
control_pipe.set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
288+
control_pipe.enable_model_cpu_offload()
289+
290+
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
291+
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
292+
293+
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
294+
control_image = processor(control_image)[0].convert("RGB")
295+
296+
image = control_pipe(
297+
prompt=prompt,
298+
control_image=control_image,
299+
height=1024,
300+
width=1024,
301+
num_inference_steps=8,
302+
guidance_scale=10.0,
303+
generator=torch.Generator().manual_seed(42),
304+
).images[0]
305+
image.save("output.png")
306+
```
307+
271308
## Running FP16 inference
272309

273310
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.

docs/source/en/api/pipelines/ltx_video.md

Lines changed: 39 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -61,6 +61,45 @@ pipe = LTXImageToVideoPipeline.from_single_file(
6161
)
6262
```
6363

64+
Loading [LTX GGUF checkpoints](https://huggingface.co/city96/LTX-Video-gguf) are also supported:
65+
66+
```py
67+
import torch
68+
from diffusers.utils import export_to_video
69+
from diffusers import LTXPipeline, LTXVideoTransformer3DModel, GGUFQuantizationConfig
70+
71+
ckpt_path = (
72+
"https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3_K_S.gguf"
73+
)
74+
transformer = LTXVideoTransformer3DModel.from_single_file(
75+
ckpt_path,
76+
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
77+
torch_dtype=torch.bfloat16,
78+
)
79+
pipe = LTXPipeline.from_pretrained(
80+
"Lightricks/LTX-Video",
81+
transformer=transformer,
82+
generator=torch.manual_seed(0),
83+
torch_dtype=torch.bfloat16,
84+
)
85+
pipe.enable_model_cpu_offload()
86+
87+
prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
88+
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
89+
90+
video = pipe(
91+
prompt=prompt,
92+
negative_prompt=negative_prompt,
93+
width=704,
94+
height=480,
95+
num_frames=161,
96+
num_inference_steps=50,
97+
).frames[0]
98+
export_to_video(video, "output_gguf_ltx.mp4", fps=24)
99+
```
100+
101+
Make sure to read the [documentation on GGUF](../../quantization/gguf) to learn more about our GGUF support.
102+
64103
Refer to [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogvideox#memory-optimization) to learn more about optimizing memory consumption.
65104

66105
## LTXPipeline

docs/source/en/api/pipelines/mochi.md

Lines changed: 196 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
# limitations under the License.
1414
-->
1515

16-
# Mochi
16+
# Mochi 1 Preview
1717

1818
[Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) from Genmo.
1919

@@ -25,6 +25,201 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.m
2525

2626
</Tip>
2727

28+
## Generating videos with Mochi-1 Preview
29+
30+
The following example will download the full precision `mochi-1-preview` weights and produce the highest quality results but will require at least 42GB VRAM to run.
31+
32+
```python
33+
import torch
34+
from diffusers import MochiPipeline
35+
from diffusers.utils import export_to_video
36+
37+
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview")
38+
39+
# Enable memory savings
40+
pipe.enable_model_cpu_offload()
41+
pipe.enable_vae_tiling()
42+
43+
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
44+
45+
with torch.autocast("cuda", torch.bfloat16, cache_enabled=False):
46+
frames = pipe(prompt, num_frames=85).frames[0]
47+
48+
export_to_video(frames, "mochi.mp4", fps=30)
49+
```
50+
51+
## Using a lower precision variant to save memory
52+
53+
The following example will use the `bfloat16` variant of the model and requires 22GB VRAM to run. There is a slight drop in the quality of the generated video as a result.
54+
55+
```python
56+
import torch
57+
from diffusers import MochiPipeline
58+
from diffusers.utils import export_to_video
59+
60+
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)
61+
62+
# Enable memory savings
63+
pipe.enable_model_cpu_offload()
64+
pipe.enable_vae_tiling()
65+
66+
prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
67+
frames = pipe(prompt, num_frames=85).frames[0]
68+
69+
export_to_video(frames, "mochi.mp4", fps=30)
70+
```
71+
72+
## Reproducing the results from the Genmo Mochi repo
73+
74+
The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the the original implementation, please refer to the following example.
75+
76+
<Tip>
77+
The original Mochi implementation zeros out empty prompts. However, enabling this option and placing the entire pipeline under autocast can lead to numerical overflows with the T5 text encoder.
78+
79+
When enabling `force_zeros_for_empty_prompt`, it is recommended to run the text encoding step outside the autocast context in full precision.
80+
</Tip>
81+
82+
<Tip>
83+
Decoding the latents in full precision is very memory intensive. You will need at least 70GB VRAM to generate the 163 frames in this example. To reduce memory, either reduce the number of frames or run the decoding step in `torch.bfloat16`.
84+
</Tip>
85+
86+
```python
87+
import torch
88+
from torch.nn.attention import SDPBackend, sdpa_kernel
89+
90+
from diffusers import MochiPipeline
91+
from diffusers.utils import export_to_video
92+
from diffusers.video_processor import VideoProcessor
93+
94+
pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", force_zeros_for_empty_prompt=True)
95+
pipe.enable_vae_tiling()
96+
pipe.enable_model_cpu_offload()
97+
98+
prompt = "An aerial shot of a parade of elephants walking across the African savannah. The camera showcases the herd and the surrounding landscape."
99+
100+
with torch.no_grad():
101+
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = (
102+
pipe.encode_prompt(prompt=prompt)
103+
)
104+
105+
with torch.autocast("cuda", torch.bfloat16):
106+
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
107+
frames = pipe(
108+
prompt_embeds=prompt_embeds,
109+
prompt_attention_mask=prompt_attention_mask,
110+
negative_prompt_embeds=negative_prompt_embeds,
111+
negative_prompt_attention_mask=negative_prompt_attention_mask,
112+
guidance_scale=4.5,
113+
num_inference_steps=64,
114+
height=480,
115+
width=848,
116+
num_frames=163,
117+
generator=torch.Generator("cuda").manual_seed(0),
118+
output_type="latent",
119+
return_dict=False,
120+
)[0]
121+
122+
video_processor = VideoProcessor(vae_scale_factor=8)
123+
has_latents_mean = hasattr(pipe.vae.config, "latents_mean") and pipe.vae.config.latents_mean is not None
124+
has_latents_std = hasattr(pipe.vae.config, "latents_std") and pipe.vae.config.latents_std is not None
125+
if has_latents_mean and has_latents_std:
126+
latents_mean = (
127+
torch.tensor(pipe.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
128+
)
129+
latents_std = (
130+
torch.tensor(pipe.vae.config.latents_std).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype)
131+
)
132+
frames = frames * latents_std / pipe.vae.config.scaling_factor + latents_mean
133+
else:
134+
frames = frames / pipe.vae.config.scaling_factor
135+
136+
with torch.no_grad():
137+
video = pipe.vae.decode(frames.to(pipe.vae.dtype), return_dict=False)[0]
138+
139+
video = video_processor.postprocess_video(video)[0]
140+
export_to_video(video, "mochi.mp4", fps=30)
141+
```
142+
143+
## Running inference with multiple GPUs
144+
145+
It is possible to split the large Mochi transformer across multiple GPUs using the `device_map` and `max_memory` options in `from_pretrained`. In the following example we split the model across two GPUs, each with 24GB of VRAM.
146+
147+
```python
148+
import torch
149+
from diffusers import MochiPipeline, MochiTransformer3DModel
150+
from diffusers.utils import export_to_video
151+
152+
model_id = "genmo/mochi-1-preview"
153+
transformer = MochiTransformer3DModel.from_pretrained(
154+
model_id,
155+
subfolder="transformer",
156+
device_map="auto",
157+
max_memory={0: "24GB", 1: "24GB"}
158+
)
159+
160+
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
161+
pipe.enable_model_cpu_offload()
162+
pipe.enable_vae_tiling()
163+
164+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
165+
frames = pipe(
166+
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
167+
negative_prompt="",
168+
height=480,
169+
width=848,
170+
num_frames=85,
171+
num_inference_steps=50,
172+
guidance_scale=4.5,
173+
num_videos_per_prompt=1,
174+
generator=torch.Generator(device="cuda").manual_seed(0),
175+
max_sequence_length=256,
176+
output_type="pil",
177+
).frames[0]
178+
179+
export_to_video(frames, "output.mp4", fps=30)
180+
```
181+
182+
## Using single file loading with the Mochi Transformer
183+
184+
You can use `from_single_file` to load the Mochi transformer in its original format.
185+
186+
<Tip>
187+
Diffusers currently doesn't support using the FP8 scaled versions of the Mochi single file checkpoints.
188+
</Tip>
189+
190+
```python
191+
import torch
192+
from diffusers import MochiPipeline, MochiTransformer3DModel
193+
from diffusers.utils import export_to_video
194+
195+
model_id = "genmo/mochi-1-preview"
196+
197+
ckpt_path = "https://huggingface.co/Comfy-Org/mochi_preview_repackaged/blob/main/split_files/diffusion_models/mochi_preview_bf16.safetensors"
198+
199+
transformer = MochiTransformer3DModel.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16)
200+
201+
pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer)
202+
pipe.enable_model_cpu_offload()
203+
pipe.enable_vae_tiling()
204+
205+
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False):
206+
frames = pipe(
207+
prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.",
208+
negative_prompt="",
209+
height=480,
210+
width=848,
211+
num_frames=85,
212+
num_inference_steps=50,
213+
guidance_scale=4.5,
214+
num_videos_per_prompt=1,
215+
generator=torch.Generator(device="cuda").manual_seed(0),
216+
max_sequence_length=256,
217+
output_type="pil",
218+
).frames[0]
219+
220+
export_to_video(frames, "output.mp4", fps=30)
221+
```
222+
28223
## MochiPipeline
29224

30225
[[autodoc]] MochiPipeline

0 commit comments

Comments
 (0)