Skip to content

Commit 46ba9f6

Browse files
authored
Merge branch 'main' into expand-flux-lora
2 parents 4eef79e + f9d5a93 commit 46ba9f6

File tree

8 files changed

+545
-9
lines changed

8 files changed

+545
-9
lines changed

docs/source/en/api/pipelines/sana.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -42,6 +42,8 @@ Available models:
4242

4343
Refer to [this](https://huggingface.co/collections/Efficient-Large-Model/sana-673efba2a57ed99843f11f9e) collection for more information.
4444

45+
Note: The recommended dtype mentioned is for the transformer weights. The text encoder and VAE weights must stay in `torch.bfloat16` or `torch.float32` for the model to work correctly. Please refer to the inference example below to see how to load the model with the recommended dtype.
46+
4547
<Tip>
4648

4749
Make sure to pass the `variant` argument for downloaded checkpoints to use lower disk space. Set it to `"fp16"` for models with recommended dtype as `torch.float16`, and `"bf16"` for models with recommended dtype as `torch.bfloat16`. By default, `torch.float32` weights are downloaded, which use twice the amount of disk storage. Additionally, `torch.float32` weights can be downcasted on-the-fly by specifying the `torch_dtype` argument. Read about it in the [docs](https://huggingface.co/docs/diffusers/v0.31.0/en/api/pipelines/overview#diffusers.DiffusionPipeline.from_pretrained).

src/diffusers/loaders/__init__.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,7 @@ def text_encoder_attn_modules(text_encoder):
6565
"StableDiffusionLoraLoaderMixin",
6666
"SD3LoraLoaderMixin",
6767
"StableDiffusionXLLoraLoaderMixin",
68+
"LTXVideoLoraLoaderMixin",
6869
"LoraLoaderMixin",
6970
"FluxLoraLoaderMixin",
7071
"CogVideoXLoraLoaderMixin",
@@ -89,6 +90,7 @@ def text_encoder_attn_modules(text_encoder):
8990
CogVideoXLoraLoaderMixin,
9091
FluxLoraLoaderMixin,
9192
LoraLoaderMixin,
93+
LTXVideoLoraLoaderMixin,
9294
Mochi1LoraLoaderMixin,
9395
SD3LoraLoaderMixin,
9496
StableDiffusionLoraLoaderMixin,

src/diffusers/loaders/lora_pipeline.py

Lines changed: 308 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3290,6 +3290,314 @@ def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], *
32903290
super().unfuse_lora(components=components)
32913291

32923292

3293+
class LTXVideoLoraLoaderMixin(LoraBaseMixin):
3294+
r"""
3295+
Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
3296+
"""
3297+
3298+
_lora_loadable_modules = ["transformer"]
3299+
transformer_name = TRANSFORMER_NAME
3300+
3301+
@classmethod
3302+
@validate_hf_hub_args
3303+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
3304+
def lora_state_dict(
3305+
cls,
3306+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
3307+
**kwargs,
3308+
):
3309+
r"""
3310+
Return state dict for lora weights and the network alphas.
3311+
3312+
<Tip warning={true}>
3313+
3314+
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
3315+
3316+
This function is experimental and might change in the future.
3317+
3318+
</Tip>
3319+
3320+
Parameters:
3321+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
3322+
Can be either:
3323+
3324+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
3325+
the Hub.
3326+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
3327+
with [`ModelMixin.save_pretrained`].
3328+
- A [torch state
3329+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
3330+
3331+
cache_dir (`Union[str, os.PathLike]`, *optional*):
3332+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
3333+
is not used.
3334+
force_download (`bool`, *optional*, defaults to `False`):
3335+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
3336+
cached versions if they exist.
3337+
3338+
proxies (`Dict[str, str]`, *optional*):
3339+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
3340+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
3341+
local_files_only (`bool`, *optional*, defaults to `False`):
3342+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
3343+
won't be downloaded from the Hub.
3344+
token (`str` or *bool*, *optional*):
3345+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
3346+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
3347+
revision (`str`, *optional*, defaults to `"main"`):
3348+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
3349+
allowed by Git.
3350+
subfolder (`str`, *optional*, defaults to `""`):
3351+
The subfolder location of a model file within a larger model repository on the Hub or locally.
3352+
3353+
"""
3354+
# Load the main state dict first which has the LoRA layers for either of
3355+
# transformer and text encoder or both.
3356+
cache_dir = kwargs.pop("cache_dir", None)
3357+
force_download = kwargs.pop("force_download", False)
3358+
proxies = kwargs.pop("proxies", None)
3359+
local_files_only = kwargs.pop("local_files_only", None)
3360+
token = kwargs.pop("token", None)
3361+
revision = kwargs.pop("revision", None)
3362+
subfolder = kwargs.pop("subfolder", None)
3363+
weight_name = kwargs.pop("weight_name", None)
3364+
use_safetensors = kwargs.pop("use_safetensors", None)
3365+
3366+
allow_pickle = False
3367+
if use_safetensors is None:
3368+
use_safetensors = True
3369+
allow_pickle = True
3370+
3371+
user_agent = {
3372+
"file_type": "attn_procs_weights",
3373+
"framework": "pytorch",
3374+
}
3375+
3376+
state_dict = _fetch_state_dict(
3377+
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
3378+
weight_name=weight_name,
3379+
use_safetensors=use_safetensors,
3380+
local_files_only=local_files_only,
3381+
cache_dir=cache_dir,
3382+
force_download=force_download,
3383+
proxies=proxies,
3384+
token=token,
3385+
revision=revision,
3386+
subfolder=subfolder,
3387+
user_agent=user_agent,
3388+
allow_pickle=allow_pickle,
3389+
)
3390+
3391+
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
3392+
if is_dora_scale_present:
3393+
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
3394+
logger.warning(warn_msg)
3395+
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
3396+
3397+
return state_dict
3398+
3399+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
3400+
def load_lora_weights(
3401+
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
3402+
):
3403+
"""
3404+
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
3405+
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
3406+
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
3407+
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
3408+
dict is loaded into `self.transformer`.
3409+
3410+
Parameters:
3411+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
3412+
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
3413+
adapter_name (`str`, *optional*):
3414+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
3415+
`default_{i}` where i is the total number of adapters being loaded.
3416+
low_cpu_mem_usage (`bool`, *optional*):
3417+
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
3418+
weights.
3419+
kwargs (`dict`, *optional*):
3420+
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
3421+
"""
3422+
if not USE_PEFT_BACKEND:
3423+
raise ValueError("PEFT backend is required for this method.")
3424+
3425+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
3426+
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
3427+
raise ValueError(
3428+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
3429+
)
3430+
3431+
# if a dict is passed, copy it instead of modifying it inplace
3432+
if isinstance(pretrained_model_name_or_path_or_dict, dict):
3433+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
3434+
3435+
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
3436+
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
3437+
3438+
is_correct_format = all("lora" in key for key in state_dict.keys())
3439+
if not is_correct_format:
3440+
raise ValueError("Invalid LoRA checkpoint.")
3441+
3442+
self.load_lora_into_transformer(
3443+
state_dict,
3444+
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
3445+
adapter_name=adapter_name,
3446+
_pipeline=self,
3447+
low_cpu_mem_usage=low_cpu_mem_usage,
3448+
)
3449+
3450+
@classmethod
3451+
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
3452+
def load_lora_into_transformer(
3453+
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
3454+
):
3455+
"""
3456+
This will load the LoRA layers specified in `state_dict` into `transformer`.
3457+
3458+
Parameters:
3459+
state_dict (`dict`):
3460+
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
3461+
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
3462+
encoder lora layers.
3463+
transformer (`LTXVideoTransformer3DModel`):
3464+
The Transformer model to load the LoRA layers into.
3465+
adapter_name (`str`, *optional*):
3466+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
3467+
`default_{i}` where i is the total number of adapters being loaded.
3468+
low_cpu_mem_usage (`bool`, *optional*):
3469+
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
3470+
weights.
3471+
"""
3472+
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
3473+
raise ValueError(
3474+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
3475+
)
3476+
3477+
# Load the layers corresponding to transformer.
3478+
logger.info(f"Loading {cls.transformer_name}.")
3479+
transformer.load_lora_adapter(
3480+
state_dict,
3481+
network_alphas=None,
3482+
adapter_name=adapter_name,
3483+
_pipeline=_pipeline,
3484+
low_cpu_mem_usage=low_cpu_mem_usage,
3485+
)
3486+
3487+
@classmethod
3488+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
3489+
def save_lora_weights(
3490+
cls,
3491+
save_directory: Union[str, os.PathLike],
3492+
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
3493+
is_main_process: bool = True,
3494+
weight_name: str = None,
3495+
save_function: Callable = None,
3496+
safe_serialization: bool = True,
3497+
):
3498+
r"""
3499+
Save the LoRA parameters corresponding to the UNet and text encoder.
3500+
3501+
Arguments:
3502+
save_directory (`str` or `os.PathLike`):
3503+
Directory to save LoRA parameters to. Will be created if it doesn't exist.
3504+
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
3505+
State dict of the LoRA layers corresponding to the `transformer`.
3506+
is_main_process (`bool`, *optional*, defaults to `True`):
3507+
Whether the process calling this is the main process or not. Useful during distributed training and you
3508+
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
3509+
process to avoid race conditions.
3510+
save_function (`Callable`):
3511+
The function to use to save the state dictionary. Useful during distributed training when you need to
3512+
replace `torch.save` with another method. Can be configured with the environment variable
3513+
`DIFFUSERS_SAVE_MODE`.
3514+
safe_serialization (`bool`, *optional*, defaults to `True`):
3515+
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
3516+
"""
3517+
state_dict = {}
3518+
3519+
if not transformer_lora_layers:
3520+
raise ValueError("You must pass `transformer_lora_layers`.")
3521+
3522+
if transformer_lora_layers:
3523+
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
3524+
3525+
# Save the model
3526+
cls.write_lora_layers(
3527+
state_dict=state_dict,
3528+
save_directory=save_directory,
3529+
is_main_process=is_main_process,
3530+
weight_name=weight_name,
3531+
save_function=save_function,
3532+
safe_serialization=safe_serialization,
3533+
)
3534+
3535+
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.fuse_lora with unet->transformer
3536+
def fuse_lora(
3537+
self,
3538+
components: List[str] = ["transformer", "text_encoder"],
3539+
lora_scale: float = 1.0,
3540+
safe_fusing: bool = False,
3541+
adapter_names: Optional[List[str]] = None,
3542+
**kwargs,
3543+
):
3544+
r"""
3545+
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
3546+
3547+
<Tip warning={true}>
3548+
3549+
This is an experimental API.
3550+
3551+
</Tip>
3552+
3553+
Args:
3554+
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
3555+
lora_scale (`float`, defaults to 1.0):
3556+
Controls how much to influence the outputs with the LoRA parameters.
3557+
safe_fusing (`bool`, defaults to `False`):
3558+
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
3559+
adapter_names (`List[str]`, *optional*):
3560+
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
3561+
3562+
Example:
3563+
3564+
```py
3565+
from diffusers import DiffusionPipeline
3566+
import torch
3567+
3568+
pipeline = DiffusionPipeline.from_pretrained(
3569+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
3570+
).to("cuda")
3571+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
3572+
pipeline.fuse_lora(lora_scale=0.7)
3573+
```
3574+
"""
3575+
super().fuse_lora(
3576+
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
3577+
)
3578+
3579+
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.unfuse_lora with unet->transformer
3580+
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
3581+
r"""
3582+
Reverses the effect of
3583+
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
3584+
3585+
<Tip warning={true}>
3586+
3587+
This is an experimental API.
3588+
3589+
</Tip>
3590+
3591+
Args:
3592+
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
3593+
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
3594+
unfuse_text_encoder (`bool`, defaults to `True`):
3595+
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
3596+
LoRA parameters then it won't have any effect.
3597+
"""
3598+
super().unfuse_lora(components=components)
3599+
3600+
32933601
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
32943602
def __init__(self, *args, **kwargs):
32953603
deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."

src/diffusers/loaders/peft.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,7 @@
5353
"FluxTransformer2DModel": lambda model_cls, weights: weights,
5454
"CogVideoXTransformer3DModel": lambda model_cls, weights: weights,
5555
"MochiTransformer3DModel": lambda model_cls, weights: weights,
56+
"LTXVideoTransformer3DModel": lambda model_cls, weights: weights,
5657
}
5758

5859

0 commit comments

Comments
 (0)