Skip to content

Commit 4750ce6

Browse files
committed
flux group-offload
1 parent a4c1aac commit 4750ce6

File tree

1 file changed

+59
-2
lines changed
  • docs/source/en/api/pipelines

1 file changed

+59
-2
lines changed

docs/source/en/api/pipelines/flux.md

Lines changed: 59 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -355,8 +355,65 @@ image.save('flux_ip_adapter_output.jpg')
355355
<figcaption class="mt-2 text-sm text-center text-gray-500">IP-Adapter examples with prompt "wearing sunglasses"</figcaption>
356356
</div>
357357

358+
## Optimize
358359

359-
## Running FP16 inference
360+
Flux is a very large model and requires ~50GB of RAM. Enable some of the optimizations below to lower the memory requirements.
361+
362+
### Group offloading
363+
364+
[Group offloading](../../optimization/memory#group-offloading) saves memory by offloading groups of internal layers rather than the whole model or weights. Use [`~hooks.apply_group_offloading`] on a model and you can optionally specify the `offload_type`. Setting it to `leaf_level` offloads the lowest leaf-level parameters to the CPU instead of offloading at the module-level.
365+
366+
```py
367+
import torch
368+
from diffusers import FluxPipeline
369+
from diffusers.hooks import apply_group_offloading
370+
371+
model_id = "black-forest-labs/FLUX.1-dev"
372+
dtype = torch.bfloat16
373+
pipe = FluxPipeline.from_pretrained(
374+
model_id,
375+
torch_dtype=dtype,
376+
)
377+
378+
apply_group_offloading(
379+
pipe.transformer,
380+
offload_type="leaf_level",
381+
offload_device=torch.device("cpu"),
382+
onload_device=torch.device("cuda"),
383+
)
384+
apply_group_offloading(
385+
pipe.text_encoder,
386+
offload_device=torch.device("cpu"),
387+
onload_device=torch.device("cuda"),
388+
offload_type="leaf_level"
389+
)
390+
apply_group_offloading(
391+
pipe.text_encoder_2,
392+
offload_device=torch.device("cpu"),
393+
onload_device=torch.device("cuda"),
394+
offload_type="leaf_level"
395+
)
396+
apply_group_offloading(
397+
pipe.vae,
398+
offload_device=torch.device("cpu"),
399+
onload_device=torch.device("cuda"),
400+
offload_type="leaf_level"
401+
)
402+
403+
prompt="A cat wearing sunglasses and working as a lifeguard at pool."
404+
405+
generator = torch.Generator().manual_seed(181201)
406+
image = pipe(
407+
prompt,
408+
width=576,
409+
height=1024,
410+
num_inference_steps=30,
411+
generator=generator
412+
).images[0]
413+
image
414+
```
415+
416+
### Running FP16 inference
360417

361418
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
362419

@@ -385,7 +442,7 @@ out = pipe(
385442
out.save("image.png")
386443
```
387444

388-
## Quantization
445+
### Quantization
389446

390447
Quantization helps reduce the memory requirements of very large models by storing model weights in a lower precision data type. However, quantization may have varying impact on video quality depending on the video model.
391448

0 commit comments

Comments
 (0)