Skip to content

Commit 4845478

Browse files
committed
fix: Refactor code, remove mask_image_latents and ruff check
1 parent a8ca715 commit 4845478

File tree

3 files changed

+58
-33
lines changed

3 files changed

+58
-33
lines changed

src/diffusers/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -976,8 +976,8 @@
976976
FluxFillPipeline,
977977
FluxImg2ImgPipeline,
978978
FluxInpaintPipeline,
979-
FluxKontextPipeline,
980979
FluxKontextInpaintPipeline,
980+
FluxKontextPipeline,
981981
FluxPipeline,
982982
FluxPriorReduxPipeline,
983983
HiDreamImagePipeline,

src/diffusers/pipelines/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -611,8 +611,8 @@
611611
FluxFillPipeline,
612612
FluxImg2ImgPipeline,
613613
FluxInpaintPipeline,
614-
FluxKontextPipeline,
615614
FluxKontextInpaintPipeline,
615+
FluxKontextPipeline,
616616
FluxPipeline,
617617
FluxPriorReduxPipeline,
618618
ReduxImageEncoder,

src/diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py

Lines changed: 56 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@
55
from typing import Any, Callable, Dict, List, Optional, Union
66

77
import numpy as np
8+
import PIL.Image
89
import torch
910
from transformers import (
1011
CLIPImageProcessor,
@@ -44,27 +45,53 @@
4445

4546
EXAMPLE_DOC_STRING = """
4647
Examples:
48+
# Inpainting with text only
4749
```py
4850
>>> import torch
49-
>>> from diffusers import FluxKontextPipeline
51+
>>> from diffusers import FluxKontextInpaintPipeline
5052
>>> from diffusers.utils import load_image
5153
52-
>>> pipe = FluxKontextPipeline.from_pretrained(
53-
... "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
54-
... )
54+
>>> prompt = "Change the yellow dinosaur to green one"
55+
>>> img_url = "https://github.com/ZenAI-Vietnam/Flux-Kontext-pipelines/blob/main/assets/dinosaur_input.jpeg?raw=true"
56+
>>> mask_url = "https://github.com/ZenAI-Vietnam/Flux-Kontext-pipelines/blob/main/assets/dinosaur_mask.png?raw=true"
57+
58+
>>> source = load_image(img_url)
59+
>>> mask = load_image(mask_url)
60+
61+
>>> pipe = FluxKontextInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16)
62+
>>> pipe.to("cuda")
63+
64+
>>> image = pipe(prompt=prompt, image=source, mask_image=mask, strength=1.0).images[0]
65+
>>> image.save("kontext_inpainting_normal.png")
66+
```
67+
68+
# Inpainting with image conditioning
69+
```py
70+
>>> import torch
71+
>>> from diffusers import FluxKontextInpaintPipeline
72+
>>> from diffusers.utils import load_image
73+
74+
>>> pipe = FluxKontextInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16)
5575
>>> pipe.to("cuda")
5676
57-
>>> image = load_image(
58-
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
59-
... ).convert("RGB")
60-
>>> prompt = "Make Pikachu hold a sign that says 'Black Forest Labs is awesome', yarn art style, detailed, vibrant colors"
77+
>>> prompt = "Replace this ball"
78+
>>> img_url = "https://images.pexels.com/photos/39362/the-ball-stadion-football-the-pitch-39362.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=500"
79+
>>> mask_url = "https://github.com/ZenAI-Vietnam/Flux-Kontext-pipelines/blob/main/assets/ball_mask.png?raw=true"
80+
>>> image_reference_url = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTah3x6OL_ECMBaZ5ZlJJhNsyC-OSMLWAI-xw&s"
81+
82+
>>> source = load_image(img_url)
83+
>>> mask = load_image(mask_url)
84+
>>> image_reference = load_image(image_reference_url)
85+
86+
>>> mask = pipe.mask_processor.blur(mask, blur_factor=12)
6187
>>> image = pipe(
62-
... image=image,
6388
... prompt=prompt,
64-
... guidance_scale=2.5,
65-
... generator=torch.Generator().manual_seed(42),
89+
... image=source,
90+
... mask_image=mask,
91+
... image_reference=image_reference,
92+
... strength=1.0
6693
... ).images[0]
67-
>>> image.save("output.png")
94+
>>> image.save("kontext_inpainting_ref.png")
6895
```
6996
"""
7097

@@ -250,7 +277,7 @@ def __init__(
250277
do_normalize=False,
251278
do_binarize=True,
252279
do_convert_grayscale=True,
253-
)
280+
)
254281

255282
self.tokenizer_max_length = (
256283
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
@@ -780,6 +807,7 @@ def prepare_latents(
780807

781808
return latents, image_latents, image_reference_latents, latent_ids, image_ids, image_reference_ids, noise
782809

810+
# Copied from diffusers.pipelines.flux.pipeline_flux_inpaint.FluxInpaintPipeline.prepare_mask_latents
783811
def prepare_mask_latents(
784812
self,
785813
mask,
@@ -880,7 +908,6 @@ def __call__(
880908
image: Optional[PipelineImageInput] = None,
881909
image_reference: Optional[PipelineImageInput] = None,
882910
mask_image: PipelineImageInput = None,
883-
masked_image_latents: PipelineImageInput = None,
884911
prompt: Union[str, List[str]] = None,
885912
prompt_2: Optional[Union[str, List[str]]] = None,
886913
negative_prompt: Union[str, List[str]] = None,
@@ -918,13 +945,13 @@ def __call__(
918945
919946
Args:
920947
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
921-
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
922-
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
923-
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
924-
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
925-
latents as `image`, but if passing latents directly it is not encoded again.
948+
`Image`, numpy array or tensor representing an image batch to be be inpainted (which parts of the image to be masked out
949+
with `mask_image` and repainted according to `prompt` and `image_reference`). For both numpy array and pytorch tensor,
950+
the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the expected shape should be
951+
`(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`
952+
It can also accept image latents as `image`, but if passing latents directly it is not encoded again.
926953
image_reference (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
927-
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
954+
`Image`, numpy array or tensor representing an image batch to be used as the starting point for the masked area. For both
928955
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
929956
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)` If it is a numpy array or a
930957
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
@@ -936,9 +963,6 @@ def __call__(
936963
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
937964
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
938965
1)`, or `(H, W)`.
939-
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
940-
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
941-
latents tensor will ge generated by `mask_image`.
942966
prompt (`str` or `List[str]`, *optional*):
943967
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
944968
instead.
@@ -1121,8 +1145,10 @@ def __call__(
11211145
resize_mode = "default"
11221146

11231147
image = self.image_processor.preprocess(image, image_height, image_width, crops_coords=crops_coords, resize_mode=resize_mode)
1148+
else:
1149+
raise ValueError("image must be provided correctly for inpainting")
11241150

1125-
init_image = image.to(dtype=torch.float32)
1151+
init_image = image.to(dtype=torch.float32)
11261152

11271153
#2.1 Preprocess image_reference
11281154
if image_reference is not None and not (isinstance(image_reference, torch.Tensor) and image_reference.size(1) == self.latent_channels):
@@ -1138,6 +1164,8 @@ def __call__(
11381164
image_reference_height = image_reference_height // multiple_of * multiple_of
11391165
image_reference = self.image_processor.resize(image_reference, image_reference_height, image_reference_width)
11401166
image_reference = self.image_processor.preprocess(image_reference, image_reference_height, image_reference_width, crops_coords=crops_coords, resize_mode=resize_mode)
1167+
else:
1168+
image_reference = None
11411169

11421170
# 3. Define call parameters
11431171
if prompt is not None and isinstance(prompt, str):
@@ -1174,7 +1202,7 @@ def __call__(
11741202
(
11751203
negative_prompt_embeds,
11761204
negative_pooled_prompt_embeds,
1177-
negative_text_ids,
1205+
negative_text_ids,
11781206
) = self.encode_prompt(
11791207
prompt=negative_prompt,
11801208
prompt_2=negative_prompt_2,
@@ -1239,12 +1267,9 @@ def __call__(
12391267
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
12401268
)
12411269

1242-
if masked_image_latents is None:
1243-
masked_image = init_image * (mask_condition < 0.5)
1244-
else:
1245-
masked_image = masked_image_latents
1270+
masked_image = init_image * (mask_condition < 0.5)
12461271

1247-
mask, masked_image_latents = self.prepare_mask_latents(
1272+
mask, _ = self.prepare_mask_latents(
12481273
mask_condition,
12491274
masked_image,
12501275
batch_size,
@@ -1355,7 +1380,7 @@ def __call__(
13551380
init_latents_proper = self.scheduler.scale_noise(
13561381
init_latents_proper, torch.tensor([noise_timestep]), noise
13571382
)
1358-
1383+
13591384
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
13601385

13611386
if latents.dtype != latents_dtype:

0 commit comments

Comments
 (0)