Skip to content

Commit 4c37f02

Browse files
committed
update
1 parent ea5a6a8 commit 4c37f02

File tree

1 file changed

+72
-8
lines changed

1 file changed

+72
-8
lines changed

src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py

Lines changed: 72 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@
2424
CLIPTokenizer,
2525
LlamaTokenizerFast,
2626
LlavaForConditionalGeneration,
27+
LlavaProcessor,
2728
)
2829

2930
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
@@ -100,6 +101,50 @@
100101
}
101102

102103

104+
def _expand_input_ids_with_image_tokens(
105+
text_input_ids,
106+
prompt_attention_mask,
107+
max_sequence_length,
108+
image_token_index,
109+
image_emb_len,
110+
image_emb_start,
111+
image_emb_end,
112+
pad_token_id,
113+
):
114+
special_image_token_mask = text_input_ids == image_token_index
115+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
116+
batch_indices, non_image_indices = torch.where(text_input_ids != image_token_index)
117+
118+
max_expanded_length = max_sequence_length + (num_special_image_tokens.max() * (image_emb_len - 1))
119+
new_token_positions = torch.cumsum((special_image_token_mask * (image_emb_len - 1) + 1), -1) - 1
120+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
121+
122+
expanded_input_ids = torch.full(
123+
(text_input_ids.shape[0], max_expanded_length),
124+
pad_token_id,
125+
dtype=text_input_ids.dtype,
126+
device=text_input_ids.device,
127+
)
128+
expanded_input_ids[batch_indices, text_to_overwrite] = text_input_ids[batch_indices, non_image_indices]
129+
expanded_input_ids[batch_indices, image_emb_start:image_emb_end] = image_token_index
130+
131+
expanded_attention_mask = torch.zeros(
132+
(text_input_ids.shape[0], max_expanded_length),
133+
dtype=prompt_attention_mask.dtype,
134+
device=prompt_attention_mask.device,
135+
)
136+
attn_batch_indices, attention_indices = torch.where(expanded_input_ids != pad_token_id)
137+
expanded_attention_mask[attn_batch_indices, attention_indices] = 1.0
138+
expanded_attention_mask = expanded_attention_mask.to(prompt_attention_mask.dtype)
139+
position_ids = (expanded_attention_mask.cumsum(-1) - 1).masked_fill_((expanded_attention_mask == 0), 1)
140+
141+
return {
142+
"input_ids": expanded_input_ids,
143+
"attention_mask": expanded_attention_mask,
144+
"position_ids": position_ids,
145+
}
146+
147+
103148
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
104149
def retrieve_timesteps(
105150
scheduler,
@@ -231,6 +276,13 @@ def __init__(
231276
self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4
232277
self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8
233278
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
279+
self.llava_processor = LlavaProcessor(
280+
self.image_processor,
281+
self.tokenizer,
282+
patch_size=self.text_encoder.config.vision_config.patch_size,
283+
vision_feature_select_strategy=self.text_encoder.config.vision_feature_select_strategy,
284+
num_additional_image_tokens=1,
285+
)
234286

235287
def _get_llama_prompt_embeds(
236288
self,
@@ -251,6 +303,12 @@ def _get_llama_prompt_embeds(
251303
prompt = [prompt_template["template"].format(p) for p in prompt]
252304

253305
crop_start = prompt_template.get("crop_start", None)
306+
307+
image_emb_len = prompt_template.get("image_emb_len", 576)
308+
image_emb_start = prompt_template.get("image_emb_start", 5)
309+
image_emb_end = prompt_template.get("image_emb_end", 581)
310+
double_return_token_id = prompt_template.get("double_return_token_id", 271)
311+
254312
if crop_start is None:
255313
prompt_template_input = self.tokenizer(
256314
prompt_template["template"],
@@ -280,19 +338,25 @@ def _get_llama_prompt_embeds(
280338

281339
image_embeds = self.image_processor(image, return_tensors="pt").pixel_values.to(device)
282340

341+
image_token_index = self.text_encoder.config.image_token_index
342+
pad_token_id = self.text_encoder.config.pad_token_id
343+
expanded_inputs = _expand_input_ids_with_image_tokens(
344+
text_input_ids,
345+
prompt_attention_mask,
346+
max_sequence_length,
347+
image_token_index,
348+
image_emb_len,
349+
image_emb_start,
350+
image_emb_end,
351+
pad_token_id,
352+
)
283353
prompt_embeds = self.text_encoder(
284-
input_ids=text_input_ids,
285-
attention_mask=prompt_attention_mask,
286-
pixel_values=image_embeds,
354+
**expanded_inputs,
355+
pixel_value=image_embeds,
287356
output_hidden_states=True,
288357
).hidden_states[-(num_hidden_layers_to_skip + 1)]
289358
prompt_embeds = prompt_embeds.to(dtype=dtype)
290359

291-
image_emb_len = prompt_template.get("image_emb_len", 576)
292-
image_emb_start = prompt_template.get("image_emb_start", 5)
293-
image_emb_end = prompt_template.get("image_emb_end", 581)
294-
double_return_token_id = prompt_template.get("double_return_token_id", 271)
295-
296360
if crop_start is not None and crop_start > 0:
297361
text_crop_start = crop_start - 1 + image_emb_len
298362
batch_indices, last_double_return_token_indices = torch.where(text_input_ids == double_return_token_id)

0 commit comments

Comments
 (0)