@@ -711,16 +711,16 @@ def test_add_noise_device(self):
711711            scheduler  =  scheduler_class (** scheduler_config )
712712            scheduler .set_timesteps (self .default_num_inference_steps )
713713
714-             #  sample = self.dummy_sample.to(torch_device)
715-             #  if scheduler_class == CMStochasticIterativeScheduler:
716-             #      # Get valid timestep based on sigma_max, which should always be in timestep schedule.
717-             #      scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max)
718-             #      scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max)
719-             #  elif scheduler_class == EDMEulerScheduler:
720-             #      scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1])
721-             #  else:
722-             #      scaled_sample = scheduler.scale_model_input(sample, 0.0)
723-             #  self.assertEqual(sample.shape, scaled_sample.shape)
714+             sample  =  self .dummy_sample .to (torch_device )
715+             if  scheduler_class  ==  CMStochasticIterativeScheduler :
716+                 # Get valid timestep based on sigma_max, which should always be in timestep schedule. 
717+                 scaled_sigma_max  =  scheduler .sigma_to_t (scheduler .config .sigma_max )
718+                 scaled_sample  =  scheduler .scale_model_input (sample , scaled_sigma_max )
719+             elif  scheduler_class  ==  EDMEulerScheduler :
720+                 scaled_sample  =  scheduler .scale_model_input (sample , scheduler .timesteps [- 1 ])
721+             else :
722+                 scaled_sample  =  scheduler .scale_model_input (sample , 0.0 )
723+             self .assertEqual (sample .shape , scaled_sample .shape )
724724
725725            # noise = torch.randn_like(scaled_sample).to(torch_device) 
726726            # t = scheduler.timesteps[5][None] 
0 commit comments