@@ -1523,17 +1523,22 @@ def compute_text_embeddings(prompt, text_encoders, tokenizers):
15231523 tokens_two = torch .cat ([tokens_two , class_tokens_two ], dim = 0 )
15241524
15251525 # Scheduler and math around the number of training steps.
1526- overrode_max_train_steps = False
1527- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
1526+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
1527+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
15281528 if args .max_train_steps is None :
1529- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1530- overrode_max_train_steps = True
1529+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
1530+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
1531+ num_training_steps_for_scheduler = (
1532+ args .num_train_epochs * accelerator .num_processes * num_update_steps_per_epoch
1533+ )
1534+ else :
1535+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
15311536
15321537 lr_scheduler = get_scheduler (
15331538 args .lr_scheduler ,
15341539 optimizer = optimizer ,
1535- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
1536- num_training_steps = args . max_train_steps * accelerator . num_processes ,
1540+ num_warmup_steps = num_warmup_steps_for_scheduler ,
1541+ num_training_steps = num_training_steps_for_scheduler ,
15371542 num_cycles = args .lr_num_cycles ,
15381543 power = args .lr_power ,
15391544 )
@@ -1550,7 +1555,14 @@ def compute_text_embeddings(prompt, text_encoders, tokenizers):
15501555
15511556 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
15521557 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
1553- if overrode_max_train_steps :
1558+ if args .max_train_steps is None :
1559+ args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1560+ if num_training_steps_for_scheduler != args .max_train_steps :
1561+ logger .warning (
1562+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
1563+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
1564+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
1565+ )
15541566 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
15551567 # Afterwards we recalculate our number of training epochs
15561568 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
0 commit comments