|  | 
|  | 1 | +# AutoencoderKL training example | 
|  | 2 | + | 
|  | 3 | +## Installing the dependencies | 
|  | 4 | + | 
|  | 5 | +Before running the scripts, make sure to install the library's training dependencies: | 
|  | 6 | + | 
|  | 7 | +**Important** | 
|  | 8 | + | 
|  | 9 | +To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: | 
|  | 10 | +```bash | 
|  | 11 | +git clone https://github.com/huggingface/diffusers | 
|  | 12 | +cd diffusers | 
|  | 13 | +pip install . | 
|  | 14 | +``` | 
|  | 15 | + | 
|  | 16 | +Then cd in the example folder  and run | 
|  | 17 | +```bash | 
|  | 18 | +pip install -r requirements.txt | 
|  | 19 | +``` | 
|  | 20 | + | 
|  | 21 | + | 
|  | 22 | +And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: | 
|  | 23 | + | 
|  | 24 | +```bash | 
|  | 25 | +accelerate config | 
|  | 26 | +``` | 
|  | 27 | + | 
|  | 28 | +## Training on CIFAR10 | 
|  | 29 | + | 
|  | 30 | +Please replace the validation image with your own image. | 
|  | 31 | + | 
|  | 32 | +```bash | 
|  | 33 | +accelerate launch train_autoencoderkl.py \ | 
|  | 34 | +    --pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \ | 
|  | 35 | +    --dataset_name=cifar10 \ | 
|  | 36 | +    --image_column=img \ | 
|  | 37 | +    --validation_image images/bird.jpg images/car.jpg images/dog.jpg images/frog.jpg \ | 
|  | 38 | +    --num_train_epochs 100 \ | 
|  | 39 | +    --gradient_accumulation_steps 2 \ | 
|  | 40 | +    --learning_rate 4.5e-6 \ | 
|  | 41 | +    --lr_scheduler cosine \ | 
|  | 42 | +    --report_to wandb \ | 
|  | 43 | +``` | 
|  | 44 | + | 
|  | 45 | +## Training on ImageNet | 
|  | 46 | + | 
|  | 47 | +```bash | 
|  | 48 | +accelerate launch train_autoencoderkl.py \ | 
|  | 49 | +    --pretrained_model_name_or_path stabilityai/sd-vae-ft-mse \ | 
|  | 50 | +    --num_train_epochs 100 \ | 
|  | 51 | +    --gradient_accumulation_steps 2 \ | 
|  | 52 | +    --learning_rate 4.5e-6 \ | 
|  | 53 | +    --lr_scheduler cosine \ | 
|  | 54 | +    --report_to wandb \ | 
|  | 55 | +    --mixed_precision bf16 \ | 
|  | 56 | +    --train_data_dir /path/to/ImageNet/train \ | 
|  | 57 | +    --validation_image ./image.png \ | 
|  | 58 | +    --decoder_only | 
|  | 59 | +``` | 
0 commit comments