@@ -22,19 +22,24 @@ import torch
2222from pipeline_anytext import AnyTextPipeline
2323from text_controlnet import TextControlNetModel
2424from diffusers import DDIMScheduler
25+ from diffusers.utils import load_image
2526
2627
27- controlnet = TextControlNetModel.from_pretrained(" a/b" , subfolder = " controlnet" , torch_dtype = torch.float16)
28- model_id = " path-to-model"
29- pipe = AnyTextPipeline.from_pretrained(" a/b" , subfolder = " base" , controlnet = controlnet, torch_dtype = torch.float16, variant = " fp16" )
28+ controlnet = TextControlNetModel.from_pretrained(" tolgacangoz/anytext-controlnet" , torch_dtype = torch.float16,
29+ variant = " fp16" )
30+ pipe = AnyTextPipeline.from_pretrained(" tolgacangoz/anytext" , controlnet = controlnet,
31+ torch_dtype = torch.float16, variant = " fp16" )
3032
3133# speed up diffusion process with faster scheduler and memory optimization
3234pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
3335# uncomment following line if torch<2.0
3436# pipe.enable_xformers_memory_efficient_attention()
3537pipe.enable_model_cpu_offload()
3638# generate image
37- generator = torch.Generator(" cpu" ).manual_seed(0 )
38- image = pipe(" photo of caramel macchiato coffee on the table, top-down perspective, with " Any" " Text" written on it using cream" , num_inference_steps = 20 , generator = generator).images[0 ]
39+ generator = torch.Generator(" cpu" ).manual_seed(66273235 )
40+ prompt = ' photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream'
41+ draw_pos = load_image(" www.huggingface.co/a/AnyText/tree/main/examples/gen9.png" )
42+ image = pipe(prompt, num_inference_steps = 20 , generator = generator, mode = " generate" , draw_pos = draw_pos,
43+ ).images[0 ]
3944image
4045```
0 commit comments