|
| 1 | +# Copyright 2024 HuggingFace Inc. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import sys |
| 16 | +import unittest |
| 17 | + |
| 18 | +import numpy as np |
| 19 | +import pytest |
| 20 | +import torch |
| 21 | +from transformers import AutoTokenizer, T5EncoderModel |
| 22 | + |
| 23 | +from diffusers import ( |
| 24 | + AutoencoderKLLTXVideo, |
| 25 | + FlowMatchEulerDiscreteScheduler, |
| 26 | + LTXPipeline, |
| 27 | + LTXVideoTransformer3DModel, |
| 28 | +) |
| 29 | +from diffusers.utils.testing_utils import ( |
| 30 | + floats_tensor, |
| 31 | + is_peft_available, |
| 32 | + is_torch_version, |
| 33 | + require_peft_backend, |
| 34 | + skip_mps, |
| 35 | + torch_device, |
| 36 | +) |
| 37 | + |
| 38 | + |
| 39 | +if is_peft_available(): |
| 40 | + pass |
| 41 | + |
| 42 | +sys.path.append(".") |
| 43 | + |
| 44 | +from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 |
| 45 | + |
| 46 | + |
| 47 | +@require_peft_backend |
| 48 | +class LTXVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): |
| 49 | + pipeline_class = LTXPipeline |
| 50 | + scheduler_cls = FlowMatchEulerDiscreteScheduler |
| 51 | + scheduler_classes = [FlowMatchEulerDiscreteScheduler] |
| 52 | + scheduler_kwargs = {} |
| 53 | + |
| 54 | + transformer_kwargs = { |
| 55 | + "in_channels": 8, |
| 56 | + "out_channels": 8, |
| 57 | + "patch_size": 1, |
| 58 | + "patch_size_t": 1, |
| 59 | + "num_attention_heads": 4, |
| 60 | + "attention_head_dim": 8, |
| 61 | + "cross_attention_dim": 32, |
| 62 | + "num_layers": 1, |
| 63 | + "caption_channels": 32, |
| 64 | + } |
| 65 | + transformer_cls = LTXVideoTransformer3DModel |
| 66 | + vae_kwargs = { |
| 67 | + "latent_channels": 8, |
| 68 | + "block_out_channels": (8, 8, 8, 8), |
| 69 | + "spatio_temporal_scaling": (True, True, False, False), |
| 70 | + "layers_per_block": (1, 1, 1, 1, 1), |
| 71 | + "patch_size": 1, |
| 72 | + "patch_size_t": 1, |
| 73 | + "encoder_causal": True, |
| 74 | + "decoder_causal": False, |
| 75 | + } |
| 76 | + vae_cls = AutoencoderKLLTXVideo |
| 77 | + tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" |
| 78 | + text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" |
| 79 | + |
| 80 | + text_encoder_target_modules = ["q", "k", "v", "o"] |
| 81 | + |
| 82 | + @property |
| 83 | + def output_shape(self): |
| 84 | + return (1, 9, 32, 32, 3) |
| 85 | + |
| 86 | + def get_dummy_inputs(self, with_generator=True): |
| 87 | + batch_size = 1 |
| 88 | + sequence_length = 16 |
| 89 | + num_channels = 8 |
| 90 | + num_frames = 9 |
| 91 | + num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 |
| 92 | + latent_height = 8 |
| 93 | + latent_width = 8 |
| 94 | + |
| 95 | + generator = torch.manual_seed(0) |
| 96 | + noise = floats_tensor((batch_size, num_latent_frames, num_channels, latent_height, latent_width)) |
| 97 | + input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) |
| 98 | + |
| 99 | + pipeline_inputs = { |
| 100 | + "prompt": "dance monkey", |
| 101 | + "num_frames": num_frames, |
| 102 | + "num_inference_steps": 4, |
| 103 | + "guidance_scale": 6.0, |
| 104 | + "height": 32, |
| 105 | + "width": 32, |
| 106 | + "max_sequence_length": sequence_length, |
| 107 | + "output_type": "np", |
| 108 | + } |
| 109 | + if with_generator: |
| 110 | + pipeline_inputs.update({"generator": generator}) |
| 111 | + |
| 112 | + return noise, input_ids, pipeline_inputs |
| 113 | + |
| 114 | + @skip_mps |
| 115 | + @pytest.mark.xfail( |
| 116 | + condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"), |
| 117 | + reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.", |
| 118 | + strict=True, |
| 119 | + ) |
| 120 | + def test_lora_fuse_nan(self): |
| 121 | + for scheduler_cls in self.scheduler_classes: |
| 122 | + components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) |
| 123 | + pipe = self.pipeline_class(**components) |
| 124 | + pipe = pipe.to(torch_device) |
| 125 | + pipe.set_progress_bar_config(disable=None) |
| 126 | + _, _, inputs = self.get_dummy_inputs(with_generator=False) |
| 127 | + |
| 128 | + pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1") |
| 129 | + |
| 130 | + self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") |
| 131 | + |
| 132 | + # corrupt one LoRA weight with `inf` values |
| 133 | + with torch.no_grad(): |
| 134 | + pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf") |
| 135 | + |
| 136 | + # with `safe_fusing=True` we should see an Error |
| 137 | + with self.assertRaises(ValueError): |
| 138 | + pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True) |
| 139 | + |
| 140 | + # without we should not see an error, but every image will be black |
| 141 | + pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False) |
| 142 | + |
| 143 | + out = pipe( |
| 144 | + "test", num_inference_steps=2, max_sequence_length=inputs["max_sequence_length"], output_type="np" |
| 145 | + )[0] |
| 146 | + |
| 147 | + self.assertTrue(np.isnan(out).all()) |
| 148 | + |
| 149 | + def test_simple_inference_with_text_lora_denoiser_fused_multi(self): |
| 150 | + super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) |
| 151 | + |
| 152 | + def test_simple_inference_with_text_denoiser_lora_unfused(self): |
| 153 | + super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) |
| 154 | + |
| 155 | + @unittest.skip("Not supported in LTXVideo.") |
| 156 | + def test_simple_inference_with_text_denoiser_block_scale(self): |
| 157 | + pass |
| 158 | + |
| 159 | + @unittest.skip("Not supported in LTXVideo.") |
| 160 | + def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): |
| 161 | + pass |
| 162 | + |
| 163 | + @unittest.skip("Not supported in LTXVideo.") |
| 164 | + def test_modify_padding_mode(self): |
| 165 | + pass |
| 166 | + |
| 167 | + @unittest.skip("Text encoder LoRA is not supported in LTXVideo.") |
| 168 | + def test_simple_inference_with_partial_text_lora(self): |
| 169 | + pass |
| 170 | + |
| 171 | + @unittest.skip("Text encoder LoRA is not supported in LTXVideo.") |
| 172 | + def test_simple_inference_with_text_lora(self): |
| 173 | + pass |
| 174 | + |
| 175 | + @unittest.skip("Text encoder LoRA is not supported in LTXVideo.") |
| 176 | + def test_simple_inference_with_text_lora_and_scale(self): |
| 177 | + pass |
| 178 | + |
| 179 | + @unittest.skip("Text encoder LoRA is not supported in LTXVideo.") |
| 180 | + def test_simple_inference_with_text_lora_fused(self): |
| 181 | + pass |
| 182 | + |
| 183 | + @unittest.skip("Text encoder LoRA is not supported in LTXVideo.") |
| 184 | + def test_simple_inference_with_text_lora_save_load(self): |
| 185 | + pass |
0 commit comments