|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2022 HuggingFace Inc. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import unittest |
| 17 | + |
| 18 | +import torch |
| 19 | + |
| 20 | +from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel |
| 21 | +from diffusers.testing_utils import slow, torch_device |
| 22 | +from diffusers.training_utils import enable_full_determinism, set_seed |
| 23 | + |
| 24 | + |
| 25 | +torch.backends.cuda.matmul.allow_tf32 = False |
| 26 | + |
| 27 | + |
| 28 | +class TrainingTests(unittest.TestCase): |
| 29 | + def get_model_optimizer(self, resolution=32): |
| 30 | + set_seed(0) |
| 31 | + model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3) |
| 32 | + optimizer = torch.optim.SGD(model.parameters(), lr=0.0001) |
| 33 | + return model, optimizer |
| 34 | + |
| 35 | + @slow |
| 36 | + def test_training_step_equality(self): |
| 37 | + enable_full_determinism(0) |
| 38 | + |
| 39 | + ddpm_scheduler = DDPMScheduler( |
| 40 | + num_train_timesteps=1000, |
| 41 | + beta_start=0.0001, |
| 42 | + beta_end=0.02, |
| 43 | + beta_schedule="linear", |
| 44 | + clip_sample=True, |
| 45 | + tensor_format="pt", |
| 46 | + ) |
| 47 | + ddim_scheduler = DDIMScheduler( |
| 48 | + num_train_timesteps=1000, |
| 49 | + beta_start=0.0001, |
| 50 | + beta_end=0.02, |
| 51 | + beta_schedule="linear", |
| 52 | + clip_sample=True, |
| 53 | + tensor_format="pt", |
| 54 | + ) |
| 55 | + |
| 56 | + assert ddpm_scheduler.num_train_timesteps == ddim_scheduler.num_train_timesteps |
| 57 | + |
| 58 | + # shared batches for DDPM and DDIM |
| 59 | + set_seed(0) |
| 60 | + clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(torch_device) for _ in range(4)] |
| 61 | + noise = [torch.randn((4, 3, 32, 32)).to(torch_device) for _ in range(4)] |
| 62 | + timesteps = [torch.randint(0, 1000, (4,)).long().to(torch_device) for _ in range(4)] |
| 63 | + |
| 64 | + # train with a DDPM scheduler |
| 65 | + model, optimizer = self.get_model_optimizer(resolution=32) |
| 66 | + model.train().to(torch_device) |
| 67 | + for i in range(4): |
| 68 | + optimizer.zero_grad() |
| 69 | + ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) |
| 70 | + ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i])["sample"] |
| 71 | + loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i]) |
| 72 | + loss.backward() |
| 73 | + optimizer.step() |
| 74 | + del model, optimizer |
| 75 | + |
| 76 | + # recreate the model and optimizer, and retry with DDIM |
| 77 | + model, optimizer = self.get_model_optimizer(resolution=32) |
| 78 | + model.train().to(torch_device) |
| 79 | + for i in range(4): |
| 80 | + optimizer.zero_grad() |
| 81 | + ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) |
| 82 | + ddim_noise_pred = model(ddim_noisy_images, timesteps[i])["sample"] |
| 83 | + loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i]) |
| 84 | + loss.backward() |
| 85 | + optimizer.step() |
| 86 | + del model, optimizer |
| 87 | + |
| 88 | + self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5)) |
| 89 | + self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5)) |
0 commit comments