@@ -927,17 +927,22 @@ def load_model_hook(models, input_dir):
927927 )
928928
929929 # Scheduler and math around the number of training steps.
930- overrode_max_train_steps = False
931- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
930+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
931+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
932932 if args .max_train_steps is None :
933- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
934- overrode_max_train_steps = True
933+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
934+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
935+ num_training_steps_for_scheduler = (
936+ args .num_train_epochs * num_update_steps_per_epoch * accelerator .num_processes
937+ )
938+ else :
939+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
935940
936941 lr_scheduler = get_scheduler (
937942 args .lr_scheduler ,
938943 optimizer = optimizer ,
939- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
940- num_training_steps = args . max_train_steps * accelerator . num_processes ,
944+ num_warmup_steps = num_warmup_steps_for_scheduler ,
945+ num_training_steps = num_training_steps_for_scheduler ,
941946 num_cycles = args .lr_num_cycles ,
942947 power = args .lr_power ,
943948 )
@@ -962,8 +967,14 @@ def load_model_hook(models, input_dir):
962967
963968 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
964969 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
965- if overrode_max_train_steps :
970+ if args . max_train_steps is None :
966971 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
972+ if num_training_steps_for_scheduler != args .max_train_steps * accelerator .num_processes :
973+ logger .warning (
974+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
975+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
976+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
977+ )
967978 # Afterwards we recalculate our number of training epochs
968979 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
969980
0 commit comments