@@ -1088,17 +1088,22 @@ def compute_embeddings(batch, proportion_empty_prompts, text_encoders, tokenizer
10881088 )
10891089
10901090 # Scheduler and math around the number of training steps.
1091- overrode_max_train_steps = False
1092- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
1091+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
1092+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
10931093 if args .max_train_steps is None :
1094- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1095- overrode_max_train_steps = True
1094+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
1095+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
1096+ num_training_steps_for_scheduler = (
1097+ args .num_train_epochs * num_update_steps_per_epoch * accelerator .num_processes
1098+ )
1099+ else :
1100+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
10961101
10971102 lr_scheduler = get_scheduler (
10981103 args .lr_scheduler ,
10991104 optimizer = optimizer ,
1100- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
1101- num_training_steps = args . max_train_steps * accelerator . num_processes ,
1105+ num_warmup_steps = num_warmup_steps_for_scheduler ,
1106+ num_training_steps = num_training_steps_for_scheduler ,
11021107 num_cycles = args .lr_num_cycles ,
11031108 power = args .lr_power ,
11041109 )
@@ -1110,8 +1115,14 @@ def compute_embeddings(batch, proportion_empty_prompts, text_encoders, tokenizer
11101115
11111116 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
11121117 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
1113- if overrode_max_train_steps :
1118+ if args . max_train_steps is None :
11141119 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1120+ if num_training_steps_for_scheduler != args .max_train_steps * accelerator .num_processes :
1121+ logger .warning (
1122+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
1123+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
1124+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
1125+ )
11151126 # Afterwards we recalculate our number of training epochs
11161127 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
11171128
0 commit comments