|
| 1 | +import random |
| 2 | +import unittest |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel |
| 7 | + |
| 8 | +from diffusers import ( |
| 9 | + AutoencoderKL, |
| 10 | + FasterCacheConfig, |
| 11 | + FlowMatchEulerDiscreteScheduler, |
| 12 | + FluxKontextInpaintPipeline, |
| 13 | + FluxTransformer2DModel, |
| 14 | +) |
| 15 | +from diffusers.utils.testing_utils import floats_tensor, torch_device |
| 16 | + |
| 17 | +from ..test_pipelines_common import ( |
| 18 | + FasterCacheTesterMixin, |
| 19 | + FluxIPAdapterTesterMixin, |
| 20 | + PipelineTesterMixin, |
| 21 | + PyramidAttentionBroadcastTesterMixin, |
| 22 | +) |
| 23 | + |
| 24 | + |
| 25 | +class FluxKontextInpaintPipelineFastTests( |
| 26 | + unittest.TestCase, |
| 27 | + PipelineTesterMixin, |
| 28 | + FluxIPAdapterTesterMixin, |
| 29 | + PyramidAttentionBroadcastTesterMixin, |
| 30 | + FasterCacheTesterMixin, |
| 31 | +): |
| 32 | + pipeline_class = FluxKontextInpaintPipeline |
| 33 | + params = frozenset( |
| 34 | + ["image", "prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"] |
| 35 | + ) |
| 36 | + batch_params = frozenset(["image", "prompt"]) |
| 37 | + |
| 38 | + # there is no xformers processor for Flux |
| 39 | + test_xformers_attention = False |
| 40 | + test_layerwise_casting = True |
| 41 | + test_group_offloading = True |
| 42 | + |
| 43 | + faster_cache_config = FasterCacheConfig( |
| 44 | + spatial_attention_block_skip_range=2, |
| 45 | + spatial_attention_timestep_skip_range=(-1, 901), |
| 46 | + unconditional_batch_skip_range=2, |
| 47 | + attention_weight_callback=lambda _: 0.5, |
| 48 | + is_guidance_distilled=True, |
| 49 | + ) |
| 50 | + |
| 51 | + def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1): |
| 52 | + torch.manual_seed(0) |
| 53 | + transformer = FluxTransformer2DModel( |
| 54 | + patch_size=1, |
| 55 | + in_channels=4, |
| 56 | + num_layers=num_layers, |
| 57 | + num_single_layers=num_single_layers, |
| 58 | + attention_head_dim=16, |
| 59 | + num_attention_heads=2, |
| 60 | + joint_attention_dim=32, |
| 61 | + pooled_projection_dim=32, |
| 62 | + axes_dims_rope=[4, 4, 8], |
| 63 | + ) |
| 64 | + clip_text_encoder_config = CLIPTextConfig( |
| 65 | + bos_token_id=0, |
| 66 | + eos_token_id=2, |
| 67 | + hidden_size=32, |
| 68 | + intermediate_size=37, |
| 69 | + layer_norm_eps=1e-05, |
| 70 | + num_attention_heads=4, |
| 71 | + num_hidden_layers=5, |
| 72 | + pad_token_id=1, |
| 73 | + vocab_size=1000, |
| 74 | + hidden_act="gelu", |
| 75 | + projection_dim=32, |
| 76 | + ) |
| 77 | + |
| 78 | + torch.manual_seed(0) |
| 79 | + text_encoder = CLIPTextModel(clip_text_encoder_config) |
| 80 | + |
| 81 | + torch.manual_seed(0) |
| 82 | + text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
| 83 | + |
| 84 | + tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
| 85 | + tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
| 86 | + |
| 87 | + torch.manual_seed(0) |
| 88 | + vae = AutoencoderKL( |
| 89 | + sample_size=32, |
| 90 | + in_channels=3, |
| 91 | + out_channels=3, |
| 92 | + block_out_channels=(4,), |
| 93 | + layers_per_block=1, |
| 94 | + latent_channels=1, |
| 95 | + norm_num_groups=1, |
| 96 | + use_quant_conv=False, |
| 97 | + use_post_quant_conv=False, |
| 98 | + shift_factor=0.0609, |
| 99 | + scaling_factor=1.5035, |
| 100 | + ) |
| 101 | + |
| 102 | + scheduler = FlowMatchEulerDiscreteScheduler() |
| 103 | + |
| 104 | + return { |
| 105 | + "scheduler": scheduler, |
| 106 | + "text_encoder": text_encoder, |
| 107 | + "text_encoder_2": text_encoder_2, |
| 108 | + "tokenizer": tokenizer, |
| 109 | + "tokenizer_2": tokenizer_2, |
| 110 | + "transformer": transformer, |
| 111 | + "vae": vae, |
| 112 | + "image_encoder": None, |
| 113 | + "feature_extractor": None, |
| 114 | + } |
| 115 | + |
| 116 | + def get_dummy_inputs(self, device, seed=0): |
| 117 | + image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
| 118 | + mask_image = torch.ones((1, 1, 32, 32)).to(device) |
| 119 | + if str(device).startswith("mps"): |
| 120 | + generator = torch.manual_seed(seed) |
| 121 | + else: |
| 122 | + generator = torch.Generator(device="cpu").manual_seed(seed) |
| 123 | + |
| 124 | + inputs = { |
| 125 | + "prompt": "A painting of a squirrel eating a burger", |
| 126 | + "image": image, |
| 127 | + "mask_image": mask_image, |
| 128 | + "generator": generator, |
| 129 | + "num_inference_steps": 2, |
| 130 | + "guidance_scale": 5.0, |
| 131 | + "height": 32, |
| 132 | + "width": 32, |
| 133 | + "max_sequence_length": 48, |
| 134 | + "strength": 0.8, |
| 135 | + "output_type": "np", |
| 136 | + "_auto_resize": False, |
| 137 | + } |
| 138 | + return inputs |
| 139 | + |
| 140 | + def test_flux_inpaint_different_prompts(self): |
| 141 | + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
| 142 | + |
| 143 | + inputs = self.get_dummy_inputs(torch_device) |
| 144 | + output_same_prompt = pipe(**inputs).images[0] |
| 145 | + |
| 146 | + inputs = self.get_dummy_inputs(torch_device) |
| 147 | + inputs["prompt_2"] = "a different prompt" |
| 148 | + output_different_prompts = pipe(**inputs).images[0] |
| 149 | + |
| 150 | + max_diff = np.abs(output_same_prompt - output_different_prompts).max() |
| 151 | + |
| 152 | + # Outputs should be different here |
| 153 | + # For some reasons, they don't show large differences |
| 154 | + assert max_diff > 1e-6 |
| 155 | + |
| 156 | + def test_flux_image_output_shape(self): |
| 157 | + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
| 158 | + inputs = self.get_dummy_inputs(torch_device) |
| 159 | + |
| 160 | + height_width_pairs = [(32, 32), (72, 56)] |
| 161 | + for height, width in height_width_pairs: |
| 162 | + expected_height = height - height % (pipe.vae_scale_factor * 2) |
| 163 | + expected_width = width - width % (pipe.vae_scale_factor * 2) |
| 164 | + #Because output shape is the same as the input shape, we need to create a dummy image and mask image |
| 165 | + image = floats_tensor((1, 3, height, width), rng=random.Random(0)).to(torch_device) |
| 166 | + mask_image = torch.ones((1, 1, height, width)).to(torch_device) |
| 167 | + |
| 168 | + inputs.update({"height": height, "width": width, "max_area": height * width, "image": image, "mask_image": mask_image}) |
| 169 | + image = pipe(**inputs).images[0] |
| 170 | + output_height, output_width, _ = image.shape |
| 171 | + assert (output_height, output_width) == (expected_height, expected_width) |
| 172 | + |
| 173 | + def test_flux_true_cfg(self): |
| 174 | + pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) |
| 175 | + inputs = self.get_dummy_inputs(torch_device) |
| 176 | + inputs.pop("generator") |
| 177 | + |
| 178 | + no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0] |
| 179 | + inputs["negative_prompt"] = "bad quality" |
| 180 | + inputs["true_cfg_scale"] = 2.0 |
| 181 | + true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0] |
| 182 | + assert not np.allclose(no_true_cfg_out, true_cfg_out) |
0 commit comments