Skip to content

Commit 75e3850

Browse files
authored
Merge branch 'main' into allow-flux-lora-tests
2 parents 77cfc79 + 8d477da commit 75e3850

24 files changed

+4223
-22
lines changed

docs/source/en/api/pipelines/cogvideox.md

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -30,15 +30,17 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.m
3030
This pipeline was contributed by [zRzRzRzRzRzRzR](https://github.com/zRzRzRzRzRzRzR). The original codebase can be found [here](https://huggingface.co/THUDM). The original weights can be found under [hf.co/THUDM](https://huggingface.co/THUDM).
3131

3232
There are three official CogVideoX checkpoints for text-to-video and video-to-video.
33+
3334
| checkpoints | recommended inference dtype |
34-
|---|---|
35+
|:---:|:---:|
3536
| [`THUDM/CogVideoX-2b`](https://huggingface.co/THUDM/CogVideoX-2b) | torch.float16 |
3637
| [`THUDM/CogVideoX-5b`](https://huggingface.co/THUDM/CogVideoX-5b) | torch.bfloat16 |
3738
| [`THUDM/CogVideoX1.5-5b`](https://huggingface.co/THUDM/CogVideoX1.5-5b) | torch.bfloat16 |
3839

3940
There are two official CogVideoX checkpoints available for image-to-video.
41+
4042
| checkpoints | recommended inference dtype |
41-
|---|---|
43+
|:---:|:---:|
4244
| [`THUDM/CogVideoX-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-5b-I2V) | torch.bfloat16 |
4345
| [`THUDM/CogVideoX-1.5-5b-I2V`](https://huggingface.co/THUDM/CogVideoX-1.5-5b-I2V) | torch.bfloat16 |
4446

@@ -48,8 +50,9 @@ For the CogVideoX 1.5 series:
4850
- Both T2V and I2V models support generation with 81 and 161 frames and work best at this value. Exporting videos at 16 FPS is recommended.
4951

5052
There are two official CogVideoX checkpoints that support pose controllable generation (by the [Alibaba-PAI](https://huggingface.co/alibaba-pai) team).
53+
5154
| checkpoints | recommended inference dtype |
52-
|---|---|
55+
|:---:|:---:|
5356
| [`alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose) | torch.bfloat16 |
5457
| [`alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose`](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose) | torch.bfloat16 |
5558

docs/source/en/api/pipelines/flux.md

Lines changed: 161 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,12 +22,20 @@ Flux can be quite expensive to run on consumer hardware devices. However, you ca
2222

2323
</Tip>
2424

25-
Flux comes in two variants:
25+
Flux comes in the following variants:
2626

27-
* Timestep-distilled (`black-forest-labs/FLUX.1-schnell`)
28-
* Guidance-distilled (`black-forest-labs/FLUX.1-dev`)
27+
| model type | model id |
28+
|:----------:|:--------:|
29+
| Timestep-distilled | [`black-forest-labs/FLUX.1-schnell`](https://huggingface.co/black-forest-labs/FLUX.1-schnell) |
30+
| Guidance-distilled | [`black-forest-labs/FLUX.1-dev`](https://huggingface.co/black-forest-labs/FLUX.1-dev) |
31+
| Fill Inpainting/Outpainting (Guidance-distilled) | [`black-forest-labs/FLUX.1-Fill-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev) |
32+
| Canny Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Canny-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev) |
33+
| Depth Control (Guidance-distilled) | [`black-forest-labs/FLUX.1-Depth-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev) |
34+
| Canny Control (LoRA) | [`black-forest-labs/FLUX.1-Canny-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Canny-dev-lora) |
35+
| Depth Control (LoRA) | [`black-forest-labs/FLUX.1-Depth-dev-lora`](https://huggingface.co/black-forest-labs/FLUX.1-Depth-dev-lora) |
36+
| Redux (Adapter) | [`black-forest-labs/FLUX.1-Redux-dev`](https://huggingface.co/black-forest-labs/FLUX.1-Redux-dev) |
2937

30-
Both checkpoints have slightly difference usage which we detail below.
38+
All checkpoints have different usage which we detail below.
3139

3240
### Timestep-distilled
3341

@@ -77,7 +85,132 @@ out = pipe(
7785
out.save("image.png")
7886
```
7987

88+
### Fill Inpainting/Outpainting
89+
90+
* Flux Fill pipeline does not require `strength` as an input like regular inpainting pipelines.
91+
* It supports both inpainting and outpainting.
92+
93+
```python
94+
import torch
95+
from diffusers import FluxFillPipeline
96+
from diffusers.utils import load_image
97+
98+
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup.png")
99+
mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")
100+
101+
repo_id = "black-forest-labs/FLUX.1-Fill-dev"
102+
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")
103+
104+
image = pipe(
105+
prompt="a white paper cup",
106+
image=image,
107+
mask_image=mask,
108+
height=1632,
109+
width=1232,
110+
max_sequence_length=512,
111+
generator=torch.Generator("cpu").manual_seed(0)
112+
).images[0]
113+
image.save(f"output.png")
114+
```
115+
116+
### Canny Control
117+
118+
**Note:** `black-forest-labs/Flux.1-Canny-dev` is _not_ a [`ControlNetModel`] model. ControlNet models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Canny Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
119+
120+
```python
121+
# !pip install -U controlnet-aux
122+
import torch
123+
from controlnet_aux import CannyDetector
124+
from diffusers import FluxControlPipeline
125+
from diffusers.utils import load_image
126+
127+
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16).to("cuda")
128+
129+
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
130+
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
131+
132+
processor = CannyDetector()
133+
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
134+
135+
image = pipe(
136+
prompt=prompt,
137+
control_image=control_image,
138+
height=1024,
139+
width=1024,
140+
num_inference_steps=50,
141+
guidance_scale=30.0,
142+
).images[0]
143+
image.save("output.png")
144+
```
145+
146+
### Depth Control
147+
148+
**Note:** `black-forest-labs/Flux.1-Depth-dev` is _not_ a ControlNet model. [`ControlNetModel`] models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Depth Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
149+
150+
```python
151+
# !pip install git+https://github.com/asomoza/image_gen_aux.git
152+
import torch
153+
from diffusers import FluxControlPipeline, FluxTransformer2DModel
154+
from diffusers.utils import load_image
155+
from image_gen_aux import DepthPreprocessor
156+
157+
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")
158+
159+
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
160+
control_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
161+
162+
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
163+
control_image = processor(control_image)[0].convert("RGB")
164+
165+
image = pipe(
166+
prompt=prompt,
167+
control_image=control_image,
168+
height=1024,
169+
width=1024,
170+
num_inference_steps=30,
171+
guidance_scale=10.0,
172+
generator=torch.Generator().manual_seed(42),
173+
).images[0]
174+
image.save("output.png")
175+
```
176+
177+
### Redux
178+
179+
* Flux Redux pipeline is an adapter for FLUX.1 base models. It can be used with both flux-dev and flux-schnell, for image-to-image generation.
180+
* You can first use the `FluxPriorReduxPipeline` to get the `prompt_embeds` and `pooled_prompt_embeds`, and then feed them into the `FluxPipeline` for image-to-image generation.
181+
* When use `FluxPriorReduxPipeline` with a base pipeline, you can set `text_encoder=None` and `text_encoder_2=None` in the base pipeline, in order to save VRAM.
182+
183+
```python
184+
import torch
185+
from diffusers import FluxPriorReduxPipeline, FluxPipeline
186+
from diffusers.utils import load_image
187+
device = "cuda"
188+
dtype = torch.bfloat16
189+
190+
191+
repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
192+
repo_base = "black-forest-labs/FLUX.1-dev"
193+
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
194+
pipe = FluxPipeline.from_pretrained(
195+
repo_base,
196+
text_encoder=None,
197+
text_encoder_2=None,
198+
torch_dtype=torch.bfloat16
199+
).to(device)
200+
201+
image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png")
202+
pipe_prior_output = pipe_prior_redux(image)
203+
images = pipe(
204+
guidance_scale=2.5,
205+
num_inference_steps=50,
206+
generator=torch.Generator("cpu").manual_seed(0),
207+
**pipe_prior_output,
208+
).images
209+
images[0].save("flux-redux.png")
210+
```
211+
80212
## Running FP16 inference
213+
81214
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See [here](https://github.com/huggingface/diffusers/pull/9097#issuecomment-2272292516) for details.
82215

83216
FP16 inference code:
@@ -188,3 +321,27 @@ image.save("flux-fp8-dev.png")
188321
[[autodoc]] FluxControlNetImg2ImgPipeline
189322
- all
190323
- __call__
324+
325+
## FluxControlPipeline
326+
327+
[[autodoc]] FluxControlPipeline
328+
- all
329+
- __call__
330+
331+
## FluxControlImg2ImgPipeline
332+
333+
[[autodoc]] FluxControlImg2ImgPipeline
334+
- all
335+
- __call__
336+
337+
## FluxPriorReduxPipeline
338+
339+
[[autodoc]] FluxPriorReduxPipeline
340+
- all
341+
- __call__
342+
343+
## FluxFillPipeline
344+
345+
[[autodoc]] FluxFillPipeline
346+
- all
347+
- __call__

0 commit comments

Comments
 (0)