Skip to content

Commit 887613c

Browse files
committed
add tests
1 parent 34407f7 commit 887613c

File tree

1 file changed

+159
-0
lines changed

1 file changed

+159
-0
lines changed
Lines changed: 159 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,159 @@
1+
# Copyright 2025 The HuggingFace Team.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
import unittest
16+
17+
import numpy as np
18+
import torch
19+
20+
from diffusers import AutoencoderKLLTXVideo, LTXLatentUpsamplePipeline
21+
from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel
22+
from diffusers.utils.testing_utils import enable_full_determinism
23+
24+
from ..test_pipelines_common import PipelineTesterMixin, to_np
25+
26+
27+
enable_full_determinism()
28+
29+
30+
class LTXLatentUpsamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
31+
pipeline_class = LTXLatentUpsamplePipeline
32+
params = {"video", "generator"}
33+
batch_params = {"video", "generator"}
34+
required_optional_params = frozenset(["generator", "latents", "return_dict"])
35+
test_xformers_attention = False
36+
supports_dduf = False
37+
38+
def get_dummy_components(self):
39+
torch.manual_seed(0)
40+
vae = AutoencoderKLLTXVideo(
41+
in_channels=3,
42+
out_channels=3,
43+
latent_channels=8,
44+
block_out_channels=(8, 8, 8, 8),
45+
decoder_block_out_channels=(8, 8, 8, 8),
46+
layers_per_block=(1, 1, 1, 1, 1),
47+
decoder_layers_per_block=(1, 1, 1, 1, 1),
48+
spatio_temporal_scaling=(True, True, False, False),
49+
decoder_spatio_temporal_scaling=(True, True, False, False),
50+
decoder_inject_noise=(False, False, False, False, False),
51+
upsample_residual=(False, False, False, False),
52+
upsample_factor=(1, 1, 1, 1),
53+
timestep_conditioning=False,
54+
patch_size=1,
55+
patch_size_t=1,
56+
encoder_causal=True,
57+
decoder_causal=False,
58+
)
59+
vae.use_framewise_encoding = False
60+
vae.use_framewise_decoding = False
61+
62+
torch.manual_seed(0)
63+
latent_upsampler = LTXLatentUpsamplerModel(
64+
in_channels=8,
65+
mid_channels=32,
66+
num_blocks_per_stage=1,
67+
dims=3,
68+
spatial_upsample=True,
69+
temporal_upsample=False,
70+
)
71+
72+
components = {
73+
"vae": vae,
74+
"latent_upsampler": latent_upsampler,
75+
}
76+
return components
77+
78+
def get_dummy_inputs(self, device, seed=0):
79+
if str(device).startswith("mps"):
80+
generator = torch.manual_seed(seed)
81+
else:
82+
generator = torch.Generator(device=device).manual_seed(seed)
83+
84+
video = torch.randn((5, 3, 32, 32), generator=generator, device=device)
85+
86+
inputs = {
87+
"video": video,
88+
"generator": generator,
89+
"height": 16,
90+
"width": 16,
91+
"output_type": "pt",
92+
}
93+
94+
return inputs
95+
96+
def test_inference(self):
97+
device = "cpu"
98+
99+
components = self.get_dummy_components()
100+
pipe = self.pipeline_class(**components)
101+
pipe.to(device)
102+
pipe.set_progress_bar_config(disable=None)
103+
104+
inputs = self.get_dummy_inputs(device)
105+
video = pipe(**inputs).frames
106+
generated_video = video[0]
107+
108+
self.assertEqual(generated_video.shape, (5, 3, 32, 32))
109+
expected_video = torch.randn(5, 3, 32, 32)
110+
max_diff = np.abs(generated_video - expected_video).max()
111+
self.assertLessEqual(max_diff, 1e10)
112+
113+
def test_vae_tiling(self, expected_diff_max: float = 0.25):
114+
generator_device = "cpu"
115+
components = self.get_dummy_components()
116+
117+
pipe = self.pipeline_class(**components)
118+
pipe.to("cpu")
119+
pipe.set_progress_bar_config(disable=None)
120+
121+
# Without tiling
122+
inputs = self.get_dummy_inputs(generator_device)
123+
inputs["height"] = inputs["width"] = 128
124+
output_without_tiling = pipe(**inputs)[0]
125+
126+
# With tiling
127+
pipe.vae.enable_tiling(
128+
tile_sample_min_height=96,
129+
tile_sample_min_width=96,
130+
tile_sample_stride_height=64,
131+
tile_sample_stride_width=64,
132+
)
133+
inputs = self.get_dummy_inputs(generator_device)
134+
inputs["height"] = inputs["width"] = 128
135+
output_with_tiling = pipe(**inputs)[0]
136+
137+
self.assertLess(
138+
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
139+
expected_diff_max,
140+
"VAE tiling should not affect the inference results",
141+
)
142+
143+
@unittest.skip("Test is not applicable.")
144+
def test_callback_inputs(self):
145+
pass
146+
147+
@unittest.skip("Test is not applicable.")
148+
def test_attention_slicing_forward_pass(
149+
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
150+
):
151+
pass
152+
153+
@unittest.skip("Test is not applicable.")
154+
def test_inference_batch_consistent(self):
155+
pass
156+
157+
@unittest.skip("Test is not applicable.")
158+
def test_inference_batch_single_identical(self):
159+
pass

0 commit comments

Comments
 (0)