|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2024 HuggingFace Inc. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import gc |
| 17 | +import unittest |
| 18 | + |
| 19 | +import torch |
| 20 | +from parameterized import parameterized |
| 21 | + |
| 22 | +from diffusers import AutoencoderTiny |
| 23 | +from diffusers.utils.testing_utils import ( |
| 24 | + backend_empty_cache, |
| 25 | + enable_full_determinism, |
| 26 | + floats_tensor, |
| 27 | + load_hf_numpy, |
| 28 | + slow, |
| 29 | + torch_all_close, |
| 30 | + torch_device, |
| 31 | +) |
| 32 | + |
| 33 | +from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
| 34 | + |
| 35 | + |
| 36 | +enable_full_determinism() |
| 37 | + |
| 38 | + |
| 39 | +class AutoencoderTinyTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
| 40 | + model_class = AutoencoderTiny |
| 41 | + main_input_name = "sample" |
| 42 | + base_precision = 1e-2 |
| 43 | + |
| 44 | + def get_autoencoder_tiny_config(self, block_out_channels=None): |
| 45 | + block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32] |
| 46 | + init_dict = { |
| 47 | + "in_channels": 3, |
| 48 | + "out_channels": 3, |
| 49 | + "encoder_block_out_channels": block_out_channels, |
| 50 | + "decoder_block_out_channels": block_out_channels, |
| 51 | + "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels], |
| 52 | + "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)], |
| 53 | + } |
| 54 | + return init_dict |
| 55 | + |
| 56 | + @property |
| 57 | + def dummy_input(self): |
| 58 | + batch_size = 4 |
| 59 | + num_channels = 3 |
| 60 | + sizes = (32, 32) |
| 61 | + |
| 62 | + image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
| 63 | + |
| 64 | + return {"sample": image} |
| 65 | + |
| 66 | + @property |
| 67 | + def input_shape(self): |
| 68 | + return (3, 32, 32) |
| 69 | + |
| 70 | + @property |
| 71 | + def output_shape(self): |
| 72 | + return (3, 32, 32) |
| 73 | + |
| 74 | + def prepare_init_args_and_inputs_for_common(self): |
| 75 | + init_dict = self.get_autoencoder_tiny_config() |
| 76 | + inputs_dict = self.dummy_input |
| 77 | + return init_dict, inputs_dict |
| 78 | + |
| 79 | + @unittest.skip("Model doesn't yet support smaller resolution.") |
| 80 | + def test_enable_disable_tiling(self): |
| 81 | + pass |
| 82 | + |
| 83 | + def test_enable_disable_slicing(self): |
| 84 | + init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
| 85 | + |
| 86 | + torch.manual_seed(0) |
| 87 | + model = self.model_class(**init_dict).to(torch_device) |
| 88 | + |
| 89 | + inputs_dict.update({"return_dict": False}) |
| 90 | + |
| 91 | + torch.manual_seed(0) |
| 92 | + output_without_slicing = model(**inputs_dict)[0] |
| 93 | + |
| 94 | + torch.manual_seed(0) |
| 95 | + model.enable_slicing() |
| 96 | + output_with_slicing = model(**inputs_dict)[0] |
| 97 | + |
| 98 | + self.assertLess( |
| 99 | + (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), |
| 100 | + 0.5, |
| 101 | + "VAE slicing should not affect the inference results", |
| 102 | + ) |
| 103 | + |
| 104 | + torch.manual_seed(0) |
| 105 | + model.disable_slicing() |
| 106 | + output_without_slicing_2 = model(**inputs_dict)[0] |
| 107 | + |
| 108 | + self.assertEqual( |
| 109 | + output_without_slicing.detach().cpu().numpy().all(), |
| 110 | + output_without_slicing_2.detach().cpu().numpy().all(), |
| 111 | + "Without slicing outputs should match with the outputs when slicing is manually disabled.", |
| 112 | + ) |
| 113 | + |
| 114 | + @unittest.skip("Test not supported.") |
| 115 | + def test_outputs_equivalence(self): |
| 116 | + pass |
| 117 | + |
| 118 | + @unittest.skip("Test not supported.") |
| 119 | + def test_forward_with_norm_groups(self): |
| 120 | + pass |
| 121 | + |
| 122 | + |
| 123 | +@slow |
| 124 | +class AutoencoderTinyIntegrationTests(unittest.TestCase): |
| 125 | + def tearDown(self): |
| 126 | + # clean up the VRAM after each test |
| 127 | + super().tearDown() |
| 128 | + gc.collect() |
| 129 | + backend_empty_cache(torch_device) |
| 130 | + |
| 131 | + def get_file_format(self, seed, shape): |
| 132 | + return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
| 133 | + |
| 134 | + def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
| 135 | + dtype = torch.float16 if fp16 else torch.float32 |
| 136 | + image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
| 137 | + return image |
| 138 | + |
| 139 | + def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False): |
| 140 | + torch_dtype = torch.float16 if fp16 else torch.float32 |
| 141 | + |
| 142 | + model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype) |
| 143 | + model.to(torch_device).eval() |
| 144 | + return model |
| 145 | + |
| 146 | + @parameterized.expand( |
| 147 | + [ |
| 148 | + [(1, 4, 73, 97), (1, 3, 584, 776)], |
| 149 | + [(1, 4, 97, 73), (1, 3, 776, 584)], |
| 150 | + [(1, 4, 49, 65), (1, 3, 392, 520)], |
| 151 | + [(1, 4, 65, 49), (1, 3, 520, 392)], |
| 152 | + [(1, 4, 49, 49), (1, 3, 392, 392)], |
| 153 | + ] |
| 154 | + ) |
| 155 | + def test_tae_tiling(self, in_shape, out_shape): |
| 156 | + model = self.get_sd_vae_model() |
| 157 | + model.enable_tiling() |
| 158 | + with torch.no_grad(): |
| 159 | + zeros = torch.zeros(in_shape).to(torch_device) |
| 160 | + dec = model.decode(zeros).sample |
| 161 | + assert dec.shape == out_shape |
| 162 | + |
| 163 | + def test_stable_diffusion(self): |
| 164 | + model = self.get_sd_vae_model() |
| 165 | + image = self.get_sd_image(seed=33) |
| 166 | + |
| 167 | + with torch.no_grad(): |
| 168 | + sample = model(image).sample |
| 169 | + |
| 170 | + assert sample.shape == image.shape |
| 171 | + |
| 172 | + output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
| 173 | + expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382]) |
| 174 | + |
| 175 | + assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) |
| 176 | + |
| 177 | + @parameterized.expand([(True,), (False,)]) |
| 178 | + def test_tae_roundtrip(self, enable_tiling): |
| 179 | + # load the autoencoder |
| 180 | + model = self.get_sd_vae_model() |
| 181 | + if enable_tiling: |
| 182 | + model.enable_tiling() |
| 183 | + |
| 184 | + # make a black image with a white square in the middle, |
| 185 | + # which is large enough to split across multiple tiles |
| 186 | + image = -torch.ones(1, 3, 1024, 1024, device=torch_device) |
| 187 | + image[..., 256:768, 256:768] = 1.0 |
| 188 | + |
| 189 | + # round-trip the image through the autoencoder |
| 190 | + with torch.no_grad(): |
| 191 | + sample = model(image).sample |
| 192 | + |
| 193 | + # the autoencoder reconstruction should match original image, sorta |
| 194 | + def downscale(x): |
| 195 | + return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor) |
| 196 | + |
| 197 | + assert torch_all_close(downscale(sample), downscale(image), atol=0.125) |
0 commit comments