Skip to content

Commit 8cef82c

Browse files
committed
feat: enable quantization for hidream lora training.
1 parent 8520d49 commit 8cef82c

File tree

1 file changed

+29
-12
lines changed

1 file changed

+29
-12
lines changed

examples/dreambooth/train_dreambooth_lora_hidream.py

Lines changed: 29 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,7 @@
1616
import argparse
1717
import copy
1818
import itertools
19+
import json
1920
import logging
2021
import math
2122
import os
@@ -27,14 +28,13 @@
2728

2829
import numpy as np
2930
import torch
30-
import torch.utils.checkpoint
3131
import transformers
3232
from accelerate import Accelerator
3333
from accelerate.logging import get_logger
3434
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
3535
from huggingface_hub import create_repo, upload_folder
3636
from huggingface_hub.utils import insecure_hashlib
37-
from peft import LoraConfig, set_peft_model_state_dict
37+
from peft import LoraConfig, prepare_model_for_kbit_training, set_peft_model_state_dict
3838
from peft.utils import get_peft_model_state_dict
3939
from PIL import Image
4040
from PIL.ImageOps import exif_transpose
@@ -47,6 +47,7 @@
4747
import diffusers
4848
from diffusers import (
4949
AutoencoderKL,
50+
BitsAndBytesConfig,
5051
FlowMatchEulerDiscreteScheduler,
5152
HiDreamImagePipeline,
5253
HiDreamImageTransformer2DModel,
@@ -282,6 +283,12 @@ def parse_args(input_args=None):
282283
default="meta-llama/Meta-Llama-3.1-8B-Instruct",
283284
help="Path to pretrained model or model identifier from huggingface.co/models.",
284285
)
286+
parser.add_argument(
287+
"--bnb_quantization_config_path",
288+
type=str,
289+
default=None,
290+
help="Quantization config in a JSON file that will be used to define the bitsandbytes quant config of the DiT.",
291+
)
285292
parser.add_argument(
286293
"--revision",
287294
type=str,
@@ -1056,6 +1063,14 @@ def main(args):
10561063
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
10571064
)
10581065

1066+
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
1067+
# as these weights are only used for inference, keeping weights in full precision is not required.
1068+
weight_dtype = torch.float32
1069+
if accelerator.mixed_precision == "fp16":
1070+
weight_dtype = torch.float16
1071+
elif accelerator.mixed_precision == "bf16":
1072+
weight_dtype = torch.bfloat16
1073+
10591074
# Load scheduler and models
10601075
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
10611076
args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.revision, shift=3.0
@@ -1064,20 +1079,30 @@ def main(args):
10641079
text_encoder_one, text_encoder_two, text_encoder_three, text_encoder_four = load_text_encoders(
10651080
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three
10661081
)
1067-
10681082
vae = AutoencoderKL.from_pretrained(
10691083
args.pretrained_model_name_or_path,
10701084
subfolder="vae",
10711085
revision=args.revision,
10721086
variant=args.variant,
10731087
)
1088+
quantization_config = None
1089+
if args.bnb_quantization_config_path is not None:
1090+
with open(args.bnb_quantization_config_path, "r") as f:
1091+
config_kwargs = json.load(f)
1092+
config_kwargs["bnb_4bit_compute_dtype"] = weight_dtype
1093+
quantization_config = BitsAndBytesConfig(**config_kwargs)
1094+
10741095
transformer = HiDreamImageTransformer2DModel.from_pretrained(
10751096
args.pretrained_model_name_or_path,
10761097
subfolder="transformer",
10771098
revision=args.revision,
10781099
variant=args.variant,
1100+
quantization_config=quantization_config,
1101+
torch_dtype=weight_dtype,
10791102
force_inference_output=True,
10801103
)
1104+
if args.bnb_quantization_config_path is not None:
1105+
transformer = prepare_model_for_kbit_training(transformer, use_gradient_checkpointing=False)
10811106

10821107
# We only train the additional adapter LoRA layers
10831108
transformer.requires_grad_(False)
@@ -1087,14 +1112,6 @@ def main(args):
10871112
text_encoder_three.requires_grad_(False)
10881113
text_encoder_four.requires_grad_(False)
10891114

1090-
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
1091-
# as these weights are only used for inference, keeping weights in full precision is not required.
1092-
weight_dtype = torch.float32
1093-
if accelerator.mixed_precision == "fp16":
1094-
weight_dtype = torch.float16
1095-
elif accelerator.mixed_precision == "bf16":
1096-
weight_dtype = torch.bfloat16
1097-
10981115
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
10991116
# due to pytorch#99272, MPS does not yet support bfloat16.
11001117
raise ValueError(
@@ -1109,7 +1126,7 @@ def main(args):
11091126
text_encoder_three.to(**to_kwargs)
11101127
text_encoder_four.to(**to_kwargs)
11111128
# we never offload the transformer to CPU, so we can just use the accelerator device
1112-
transformer.to(accelerator.device, dtype=weight_dtype)
1129+
transformer.to(accelerator.device)
11131130

11141131
# Initialize a text encoding pipeline and keep it to CPU for now.
11151132
text_encoding_pipeline = HiDreamImagePipeline.from_pretrained(

0 commit comments

Comments
 (0)