@@ -2184,18 +2184,6 @@ def __call__(
21842184
21852185 # 4. Prepare image
21862186 if isinstance (controlnet , ControlNetModel ):
2187- # image = self.prepare_image(
2188- # image=image,
2189- # width=width,
2190- # height=height,
2191- # batch_size=batch_size * num_images_per_prompt,
2192- # num_images_per_prompt=num_images_per_prompt,
2193- # device=device,
2194- # dtype=controlnet.dtype,
2195- # do_classifier_free_guidance=self.do_classifier_free_guidance,
2196- # guess_mode=guess_mode,
2197- # )
2198- # height, width = image.shape[-2:]
21992187 guided_hint = self .auxiliary_latent_module (
22002188 text_info = text_info ,
22012189 mode = mode ,
@@ -2205,31 +2193,6 @@ def __call__(
22052193 np_hint = np_hint ,
22062194 )
22072195 height , width = 512 , 512
2208- # elif isinstance(controlnet, MultiControlNetModel):
2209- # images = []
2210-
2211- # # Nested lists as ControlNet condition
2212- # if isinstance(image[0], list):
2213- # # Transpose the nested image list
2214- # image = [list(t) for t in zip(*image)]
2215-
2216- # for image_ in image:
2217- # image_ = self.prepare_image(
2218- # image=image_,
2219- # width=width,
2220- # height=height,
2221- # batch_size=batch_size * num_images_per_prompt,
2222- # num_images_per_prompt=num_images_per_prompt,
2223- # device=device,
2224- # dtype=controlnet.dtype,
2225- # do_classifier_free_guidance=self.do_classifier_free_guidance,
2226- # guess_mode=guess_mode,
2227- # )
2228-
2229- # images.append(image_)
2230-
2231- # image = images
2232- # height, width = image[0].shape[-2:]
22332196 else :
22342197 assert False
22352198
0 commit comments