|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2024 HuggingFace Inc. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import gc |
| 17 | +import unittest |
| 18 | + |
| 19 | +import torch |
| 20 | + |
| 21 | +from diffusers import ( |
| 22 | + AutoencoderDC, |
| 23 | +) |
| 24 | +from diffusers.utils.testing_utils import ( |
| 25 | + backend_empty_cache, |
| 26 | + enable_full_determinism, |
| 27 | + load_hf_numpy, |
| 28 | + numpy_cosine_similarity_distance, |
| 29 | + require_torch_accelerator, |
| 30 | + slow, |
| 31 | + torch_device, |
| 32 | +) |
| 33 | + |
| 34 | + |
| 35 | +enable_full_determinism() |
| 36 | + |
| 37 | + |
| 38 | +@slow |
| 39 | +@require_torch_accelerator |
| 40 | +class AutoencoderDCSingleFileTests(unittest.TestCase): |
| 41 | + model_class = AutoencoderDC |
| 42 | + ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.0/blob/main/model.safetensors" |
| 43 | + repo_id = "mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers" |
| 44 | + main_input_name = "sample" |
| 45 | + base_precision = 1e-2 |
| 46 | + |
| 47 | + def setUp(self): |
| 48 | + super().setUp() |
| 49 | + gc.collect() |
| 50 | + backend_empty_cache(torch_device) |
| 51 | + |
| 52 | + def tearDown(self): |
| 53 | + super().tearDown() |
| 54 | + gc.collect() |
| 55 | + backend_empty_cache(torch_device) |
| 56 | + |
| 57 | + def get_file_format(self, seed, shape): |
| 58 | + return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
| 59 | + |
| 60 | + def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): |
| 61 | + dtype = torch.float16 if fp16 else torch.float32 |
| 62 | + image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
| 63 | + return image |
| 64 | + |
| 65 | + def test_single_file_inference_same_as_pretrained(self): |
| 66 | + model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device) |
| 67 | + model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device) |
| 68 | + |
| 69 | + image = self.get_sd_image(33) |
| 70 | + |
| 71 | + with torch.no_grad(): |
| 72 | + sample_1 = model_1(image).sample |
| 73 | + sample_2 = model_2(image).sample |
| 74 | + |
| 75 | + assert sample_1.shape == sample_2.shape |
| 76 | + |
| 77 | + output_slice_1 = sample_1.flatten().float().cpu() |
| 78 | + output_slice_2 = sample_2.flatten().float().cpu() |
| 79 | + |
| 80 | + assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4 |
| 81 | + |
| 82 | + def test_single_file_components(self): |
| 83 | + model = self.model_class.from_pretrained(self.repo_id) |
| 84 | + model_single_file = self.model_class.from_single_file(self.ckpt_path) |
| 85 | + |
| 86 | + PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
| 87 | + for param_name, param_value in model_single_file.config.items(): |
| 88 | + if param_name in PARAMS_TO_IGNORE: |
| 89 | + continue |
| 90 | + assert ( |
| 91 | + model.config[param_name] == param_value |
| 92 | + ), f"{param_name} differs between pretrained loading and single file loading" |
| 93 | + |
| 94 | + def test_single_file_in_type_variant_components(self): |
| 95 | + # `in` variant checkpoints require passing in a `config` parameter |
| 96 | + # in order to set the scaling factor correctly. |
| 97 | + # `in` and `mix` variants have the same keys and we cannot automatically infer a scaling factor. |
| 98 | + # We default to using teh `mix` config |
| 99 | + repo_id = "mit-han-lab/dc-ae-f128c512-in-1.0-diffusers" |
| 100 | + ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-in-1.0/blob/main/model.safetensors" |
| 101 | + |
| 102 | + model = self.model_class.from_pretrained(repo_id) |
| 103 | + model_single_file = self.model_class.from_single_file(ckpt_path, config=repo_id) |
| 104 | + |
| 105 | + PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
| 106 | + for param_name, param_value in model_single_file.config.items(): |
| 107 | + if param_name in PARAMS_TO_IGNORE: |
| 108 | + continue |
| 109 | + assert ( |
| 110 | + model.config[param_name] == param_value |
| 111 | + ), f"{param_name} differs between pretrained loading and single file loading" |
| 112 | + |
| 113 | + def test_single_file_mix_type_variant_components(self): |
| 114 | + repo_id = "mit-han-lab/dc-ae-f128c512-mix-1.0-diffusers" |
| 115 | + ckpt_path = "https://huggingface.co/mit-han-lab/dc-ae-f128c512-mix-1.0/blob/main/model.safetensors" |
| 116 | + |
| 117 | + model = self.model_class.from_pretrained(repo_id) |
| 118 | + model_single_file = self.model_class.from_single_file(ckpt_path, config=repo_id) |
| 119 | + |
| 120 | + PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
| 121 | + for param_name, param_value in model_single_file.config.items(): |
| 122 | + if param_name in PARAMS_TO_IGNORE: |
| 123 | + continue |
| 124 | + assert ( |
| 125 | + model.config[param_name] == param_value |
| 126 | + ), f"{param_name} differs between pretrained loading and single file loading" |
0 commit comments