@@ -85,7 +85,6 @@ def save_model_card(
8585    images = None ,
8686    base_model : str  =  None ,
8787    instance_prompt = None ,
88-     system_prompt = None ,
8988    validation_prompt = None ,
9089    repo_folder = None ,
9190):
@@ -113,8 +112,6 @@ def save_model_card(
113112
114113You should use `{ instance_prompt }  
115114
116- The following `system_prompt` was also used used during training (ignore if `None`): { system_prompt }  
117- 
118115## Download model 
119116
120117[Download the *.safetensors LoRA]({ repo_id }  
@@ -324,12 +321,7 @@ def parse_args(input_args=None):
324321        default = 256 ,
325322        help = "Maximum sequence length to use with with the Gemma2 model" ,
326323    )
327-     parser .add_argument (
328-         "--system_prompt" ,
329-         type = str ,
330-         default = None ,
331-         help = "System prompt to use during inference to give the Gemma2 model certain characteristics." ,
332-     )
324+ 
333325    parser .add_argument (
334326        "--validation_prompt" ,
335327        type = str ,
@@ -382,7 +374,7 @@ def parse_args(input_args=None):
382374    parser .add_argument (
383375        "--output_dir" ,
384376        type = str ,
385-         default = "lumina2 -dreambooth-lora" ,
377+         default = "hidream -dreambooth-lora" ,
386378        help = "The output directory where the model predictions and checkpoints will be written." ,
387379    )
388380    parser .add_argument ("--seed" , type = int , default = None , help = "A seed for reproducible training." )
@@ -1755,7 +1747,7 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
17551747                    variant = args .variant ,
17561748                    torch_dtype = weight_dtype ,
17571749                )
1758-                 pipeline_args  =  {"prompt" : args .validation_prompt ,  "system_prompt" :  args . system_prompt }
1750+                 pipeline_args  =  {"prompt" : args .validation_prompt }
17591751                images  =  log_validation (
17601752                    pipeline = pipeline ,
17611753                    args = args ,
@@ -1799,7 +1791,7 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
17991791        if  (args .validation_prompt  and  args .num_validation_images  >  0 ) or  (args .final_validation_prompt ):
18001792            prompt_to_use  =  args .validation_prompt  if  args .validation_prompt  else  args .final_validation_prompt 
18011793            args .num_validation_images  =  args .num_validation_images  if  args .num_validation_images  else  1 
1802-             pipeline_args  =  {"prompt" : prompt_to_use , "system_prompt " : args .system_prompt }
1794+             pipeline_args  =  {"prompt" : prompt_to_use , "num_images_per_prompt " : args .num_validation_images }
18031795            images  =  log_validation (
18041796                pipeline = pipeline ,
18051797                args = args ,
@@ -1816,7 +1808,6 @@ def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
18161808                images = images ,
18171809                base_model = args .pretrained_model_name_or_path ,
18181810                instance_prompt = args .instance_prompt ,
1819-                 system_prompt = args .system_prompt ,
18201811                validation_prompt = validation_prpmpt ,
18211812                repo_folder = args .output_dir ,
18221813            )
0 commit comments