@@ -4406,6 +4406,311 @@ def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
44064406 super ().unfuse_lora (components = components )
44074407
44084408
4409+ class CogView4LoraLoaderMixin (LoraBaseMixin ):
4410+ r"""
4411+ Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
4412+ """
4413+
4414+ _lora_loadable_modules = ["transformer" ]
4415+ transformer_name = TRANSFORMER_NAME
4416+
4417+ @classmethod
4418+ @validate_hf_hub_args
4419+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
4420+ def lora_state_dict (
4421+ cls ,
4422+ pretrained_model_name_or_path_or_dict : Union [str , Dict [str , torch .Tensor ]],
4423+ ** kwargs ,
4424+ ):
4425+ r"""
4426+ Return state dict for lora weights and the network alphas.
4427+
4428+ <Tip warning={true}>
4429+
4430+ We support loading A1111 formatted LoRA checkpoints in a limited capacity.
4431+
4432+ This function is experimental and might change in the future.
4433+
4434+ </Tip>
4435+
4436+ Parameters:
4437+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
4438+ Can be either:
4439+
4440+ - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
4441+ the Hub.
4442+ - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
4443+ with [`ModelMixin.save_pretrained`].
4444+ - A [torch state
4445+ dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
4446+
4447+ cache_dir (`Union[str, os.PathLike]`, *optional*):
4448+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
4449+ is not used.
4450+ force_download (`bool`, *optional*, defaults to `False`):
4451+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
4452+ cached versions if they exist.
4453+
4454+ proxies (`Dict[str, str]`, *optional*):
4455+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
4456+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
4457+ local_files_only (`bool`, *optional*, defaults to `False`):
4458+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
4459+ won't be downloaded from the Hub.
4460+ token (`str` or *bool*, *optional*):
4461+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
4462+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
4463+ revision (`str`, *optional*, defaults to `"main"`):
4464+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
4465+ allowed by Git.
4466+ subfolder (`str`, *optional*, defaults to `""`):
4467+ The subfolder location of a model file within a larger model repository on the Hub or locally.
4468+
4469+ """
4470+ # Load the main state dict first which has the LoRA layers for either of
4471+ # transformer and text encoder or both.
4472+ cache_dir = kwargs .pop ("cache_dir" , None )
4473+ force_download = kwargs .pop ("force_download" , False )
4474+ proxies = kwargs .pop ("proxies" , None )
4475+ local_files_only = kwargs .pop ("local_files_only" , None )
4476+ token = kwargs .pop ("token" , None )
4477+ revision = kwargs .pop ("revision" , None )
4478+ subfolder = kwargs .pop ("subfolder" , None )
4479+ weight_name = kwargs .pop ("weight_name" , None )
4480+ use_safetensors = kwargs .pop ("use_safetensors" , None )
4481+
4482+ allow_pickle = False
4483+ if use_safetensors is None :
4484+ use_safetensors = True
4485+ allow_pickle = True
4486+
4487+ user_agent = {
4488+ "file_type" : "attn_procs_weights" ,
4489+ "framework" : "pytorch" ,
4490+ }
4491+
4492+ state_dict = _fetch_state_dict (
4493+ pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict ,
4494+ weight_name = weight_name ,
4495+ use_safetensors = use_safetensors ,
4496+ local_files_only = local_files_only ,
4497+ cache_dir = cache_dir ,
4498+ force_download = force_download ,
4499+ proxies = proxies ,
4500+ token = token ,
4501+ revision = revision ,
4502+ subfolder = subfolder ,
4503+ user_agent = user_agent ,
4504+ allow_pickle = allow_pickle ,
4505+ )
4506+
4507+ is_dora_scale_present = any ("dora_scale" in k for k in state_dict )
4508+ if is_dora_scale_present :
4509+ warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
4510+ logger .warning (warn_msg )
4511+ state_dict = {k : v for k , v in state_dict .items () if "dora_scale" not in k }
4512+
4513+ return state_dict
4514+
4515+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
4516+ def load_lora_weights (
4517+ self , pretrained_model_name_or_path_or_dict : Union [str , Dict [str , torch .Tensor ]], adapter_name = None , ** kwargs
4518+ ):
4519+ """
4520+ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
4521+ `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
4522+ [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
4523+ See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
4524+ dict is loaded into `self.transformer`.
4525+
4526+ Parameters:
4527+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
4528+ See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
4529+ adapter_name (`str`, *optional*):
4530+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
4531+ `default_{i}` where i is the total number of adapters being loaded.
4532+ low_cpu_mem_usage (`bool`, *optional*):
4533+ Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
4534+ weights.
4535+ kwargs (`dict`, *optional*):
4536+ See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
4537+ """
4538+ if not USE_PEFT_BACKEND :
4539+ raise ValueError ("PEFT backend is required for this method." )
4540+
4541+ low_cpu_mem_usage = kwargs .pop ("low_cpu_mem_usage" , _LOW_CPU_MEM_USAGE_DEFAULT_LORA )
4542+ if low_cpu_mem_usage and is_peft_version ("<" , "0.13.0" ):
4543+ raise ValueError (
4544+ "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
4545+ )
4546+
4547+ # if a dict is passed, copy it instead of modifying it inplace
4548+ if isinstance (pretrained_model_name_or_path_or_dict , dict ):
4549+ pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict .copy ()
4550+
4551+ # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4552+ state_dict = self .lora_state_dict (pretrained_model_name_or_path_or_dict , ** kwargs )
4553+
4554+ is_correct_format = all ("lora" in key for key in state_dict .keys ())
4555+ if not is_correct_format :
4556+ raise ValueError ("Invalid LoRA checkpoint." )
4557+
4558+ self .load_lora_into_transformer (
4559+ state_dict ,
4560+ transformer = getattr (self , self .transformer_name ) if not hasattr (self , "transformer" ) else self .transformer ,
4561+ adapter_name = adapter_name ,
4562+ _pipeline = self ,
4563+ low_cpu_mem_usage = low_cpu_mem_usage ,
4564+ )
4565+
4566+ @classmethod
4567+ # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
4568+ def load_lora_into_transformer (
4569+ cls , state_dict , transformer , adapter_name = None , _pipeline = None , low_cpu_mem_usage = False
4570+ ):
4571+ """
4572+ This will load the LoRA layers specified in `state_dict` into `transformer`.
4573+
4574+ Parameters:
4575+ state_dict (`dict`):
4576+ A standard state dict containing the lora layer parameters. The keys can either be indexed directly
4577+ into the unet or prefixed with an additional `unet` which can be used to distinguish between text
4578+ encoder lora layers.
4579+ transformer (`CogView4Transformer2DModel`):
4580+ The Transformer model to load the LoRA layers into.
4581+ adapter_name (`str`, *optional*):
4582+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
4583+ `default_{i}` where i is the total number of adapters being loaded.
4584+ low_cpu_mem_usage (`bool`, *optional*):
4585+ Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
4586+ weights.
4587+ """
4588+ if low_cpu_mem_usage and is_peft_version ("<" , "0.13.0" ):
4589+ raise ValueError (
4590+ "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
4591+ )
4592+
4593+ # Load the layers corresponding to transformer.
4594+ logger .info (f"Loading { cls .transformer_name } ." )
4595+ transformer .load_lora_adapter (
4596+ state_dict ,
4597+ network_alphas = None ,
4598+ adapter_name = adapter_name ,
4599+ _pipeline = _pipeline ,
4600+ low_cpu_mem_usage = low_cpu_mem_usage ,
4601+ )
4602+
4603+ @classmethod
4604+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
4605+ def save_lora_weights (
4606+ cls ,
4607+ save_directory : Union [str , os .PathLike ],
4608+ transformer_lora_layers : Dict [str , Union [torch .nn .Module , torch .Tensor ]] = None ,
4609+ is_main_process : bool = True ,
4610+ weight_name : str = None ,
4611+ save_function : Callable = None ,
4612+ safe_serialization : bool = True ,
4613+ ):
4614+ r"""
4615+ Save the LoRA parameters corresponding to the UNet and text encoder.
4616+
4617+ Arguments:
4618+ save_directory (`str` or `os.PathLike`):
4619+ Directory to save LoRA parameters to. Will be created if it doesn't exist.
4620+ transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
4621+ State dict of the LoRA layers corresponding to the `transformer`.
4622+ is_main_process (`bool`, *optional*, defaults to `True`):
4623+ Whether the process calling this is the main process or not. Useful during distributed training and you
4624+ need to call this function on all processes. In this case, set `is_main_process=True` only on the main
4625+ process to avoid race conditions.
4626+ save_function (`Callable`):
4627+ The function to use to save the state dictionary. Useful during distributed training when you need to
4628+ replace `torch.save` with another method. Can be configured with the environment variable
4629+ `DIFFUSERS_SAVE_MODE`.
4630+ safe_serialization (`bool`, *optional*, defaults to `True`):
4631+ Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4632+ """
4633+ state_dict = {}
4634+
4635+ if not transformer_lora_layers :
4636+ raise ValueError ("You must pass `transformer_lora_layers`." )
4637+
4638+ if transformer_lora_layers :
4639+ state_dict .update (cls .pack_weights (transformer_lora_layers , cls .transformer_name ))
4640+
4641+ # Save the model
4642+ cls .write_lora_layers (
4643+ state_dict = state_dict ,
4644+ save_directory = save_directory ,
4645+ is_main_process = is_main_process ,
4646+ weight_name = weight_name ,
4647+ save_function = save_function ,
4648+ safe_serialization = safe_serialization ,
4649+ )
4650+
4651+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
4652+ def fuse_lora (
4653+ self ,
4654+ components : List [str ] = ["transformer" ],
4655+ lora_scale : float = 1.0 ,
4656+ safe_fusing : bool = False ,
4657+ adapter_names : Optional [List [str ]] = None ,
4658+ ** kwargs ,
4659+ ):
4660+ r"""
4661+ Fuses the LoRA parameters into the original parameters of the corresponding blocks.
4662+
4663+ <Tip warning={true}>
4664+
4665+ This is an experimental API.
4666+
4667+ </Tip>
4668+
4669+ Args:
4670+ components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
4671+ lora_scale (`float`, defaults to 1.0):
4672+ Controls how much to influence the outputs with the LoRA parameters.
4673+ safe_fusing (`bool`, defaults to `False`):
4674+ Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
4675+ adapter_names (`List[str]`, *optional*):
4676+ Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
4677+
4678+ Example:
4679+
4680+ ```py
4681+ from diffusers import DiffusionPipeline
4682+ import torch
4683+
4684+ pipeline = DiffusionPipeline.from_pretrained(
4685+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
4686+ ).to("cuda")
4687+ pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
4688+ pipeline.fuse_lora(lora_scale=0.7)
4689+ ```
4690+ """
4691+ super ().fuse_lora (
4692+ components = components , lora_scale = lora_scale , safe_fusing = safe_fusing , adapter_names = adapter_names
4693+ )
4694+
4695+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4696+ def unfuse_lora (self , components : List [str ] = ["transformer" ], ** kwargs ):
4697+ r"""
4698+ Reverses the effect of
4699+ [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
4700+
4701+ <Tip warning={true}>
4702+
4703+ This is an experimental API.
4704+
4705+ </Tip>
4706+
4707+ Args:
4708+ components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
4709+ unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
4710+ """
4711+ super ().unfuse_lora (components = components )
4712+
4713+
44094714class LoraLoaderMixin (StableDiffusionLoraLoaderMixin ):
44104715 def __init__ (self , * args , ** kwargs ):
44114716 deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
0 commit comments