@@ -99,9 +99,9 @@ def _test_stable_diffusion_xl_euler(self, expected_image_shape, expected_slice,
9999
100100        assert  image .shape  ==  expected_image_shape 
101101
102-         assert  np . abs ( image_slice . flatten ()  -   expected_slice ). max ()  <   expected_max_diff ,  (
103-             "Image Slice does not match expected slice" 
104-         )
102+         assert  (
103+             np . abs ( image_slice . flatten ()  -   expected_slice ). max ()  <   expected_max_diff 
104+         ),  "Image Slice does not match expected slice" 
105105
106106
107107class  SDXLModularIPAdapterTests :
@@ -114,20 +114,20 @@ def test_pipeline_inputs_and_blocks(self):
114114        parameters  =  blocks .input_names 
115115
116116        assert  issubclass (self .pipeline_class , ModularIPAdapterMixin )
117-         assert  "ip_adapter_image"   in   parameters ,  (
118-             "` ip_adapter_image` argument must be supported by the `__call__` method"  
119-         )
117+         assert  (
118+             "ip_adapter_image"    in   parameters 
119+         ),  "`ip_adapter_image` argument must be supported by the `__call__` method" 
120120        assert  "ip_adapter"  in  blocks .sub_blocks , "pipeline must contain an IPAdapter block" 
121121
122122        _  =  blocks .sub_blocks .pop ("ip_adapter" )
123123        parameters  =  blocks .input_names 
124124        intermediate_parameters  =  blocks .intermediate_input_names 
125-         assert  "ip_adapter_image"   not   in   parameters ,  (
126-             "` ip_adapter_image` argument must be removed from the `__call__` method"  
127-         )
128-         assert  "ip_adapter_image_embeds"   not   in   intermediate_parameters ,  (
129-             "` ip_adapter_image_embeds` argument must be supported by the `__call__` method"  
130-         )
125+         assert  (
126+             "ip_adapter_image"    not   in   parameters 
127+         ),  "`ip_adapter_image` argument must be removed from the `__call__` method" 
128+         assert  (
129+             "ip_adapter_image_embeds"    not   in   intermediate_parameters 
130+         ),  "`ip_adapter_image_embeds` argument must be supported by the `__call__` method" 
131131
132132    def  _get_dummy_image_embeds (self , cross_attention_dim : int  =  32 ):
133133        return  torch .randn ((1 , 1 , cross_attention_dim ), device = torch_device )
@@ -203,9 +203,9 @@ def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=N
203203        max_diff_without_adapter_scale  =  np .abs (output_without_adapter_scale  -  output_without_adapter ).max ()
204204        max_diff_with_adapter_scale  =  np .abs (output_with_adapter_scale  -  output_without_adapter ).max ()
205205
206-         assert  max_diff_without_adapter_scale   <   expected_max_diff ,  (
207-             "Output without ip-adapter must be same as normal inference" 
208-         )
206+         assert  (
207+             max_diff_without_adapter_scale   <   expected_max_diff 
208+         ),  "Output without ip-adapter must be same as normal inference" 
209209        assert  max_diff_with_adapter_scale  >  1e-2 , "Output with ip-adapter must be different from normal inference" 
210210
211211        # 2. Multi IP-Adapter test cases 
@@ -235,12 +235,12 @@ def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=N
235235            output_without_multi_adapter_scale  -  output_without_adapter 
236236        ).max ()
237237        max_diff_with_multi_adapter_scale  =  np .abs (output_with_multi_adapter_scale  -  output_without_adapter ).max ()
238-         assert  max_diff_without_multi_adapter_scale   <   expected_max_diff ,  (
239-             "Output without multi-ip-adapter must be same as normal inference" 
240-         )
241-         assert  max_diff_with_multi_adapter_scale   >   1e-2 ,  (
242-             "Output with multi-ip-adapter scale must be different from normal inference" 
243-         )
238+         assert  (
239+             max_diff_without_multi_adapter_scale   <   expected_max_diff 
240+         ),  "Output without multi-ip-adapter must be same as normal inference" 
241+         assert  (
242+             max_diff_with_multi_adapter_scale   >   1e-2 
243+         ),  "Output with multi-ip-adapter scale must be different from normal inference" 
244244
245245
246246class  SDXLModularControlNetTests :
@@ -253,9 +253,9 @@ def test_pipeline_inputs(self):
253253        parameters  =  blocks .input_names 
254254
255255        assert  "control_image"  in  parameters , "`control_image` argument must be supported by the `__call__` method" 
256-         assert  "controlnet_conditioning_scale"   in   parameters ,  (
257-             "` controlnet_conditioning_scale` argument must be supported by the `__call__` method"  
258-         )
256+         assert  (
257+             "controlnet_conditioning_scale"    in   parameters 
258+         ),  "`controlnet_conditioning_scale` argument must be supported by the `__call__` method" 
259259
260260    def  _modify_inputs_for_controlnet_test (self , inputs : Dict [str , Any ]):
261261        controlnet_embedder_scale_factor  =  2 
@@ -301,9 +301,9 @@ def test_controlnet(self, expected_max_diff: float = 1e-4, expected_pipe_slice=N
301301        max_diff_without_controlnet_scale  =  np .abs (output_without_controlnet_scale  -  output_without_controlnet ).max ()
302302        max_diff_with_controlnet_scale  =  np .abs (output_with_controlnet_scale  -  output_without_controlnet ).max ()
303303
304-         assert  max_diff_without_controlnet_scale   <   expected_max_diff ,  (
305-             "Output without controlnet must be same as normal inference" 
306-         )
304+         assert  (
305+             max_diff_without_controlnet_scale   <   expected_max_diff 
306+         ),  "Output without controlnet must be same as normal inference" 
307307        assert  max_diff_with_controlnet_scale  >  1e-2 , "Output with controlnet must be different from normal inference" 
308308
309309    def  test_controlnet_cfg (self ):
@@ -383,26 +383,6 @@ def test_stable_diffusion_xl_euler(self):
383383    def  test_inference_batch_single_identical (self ):
384384        super ().test_inference_batch_single_identical (expected_max_diff = 3e-3 )
385385
386-     @require_torch_accelerator  
387-     def  test_stable_diffusion_xl_offloads (self ):
388-         pipes  =  []
389-         sd_pipe  =  self .get_pipeline ().to (torch_device )
390-         pipes .append (sd_pipe )
391- 
392-         cm  =  ComponentsManager ()
393-         cm .enable_auto_cpu_offload (device = torch_device )
394-         sd_pipe  =  self .get_pipeline (components_manager = cm )
395-         pipes .append (sd_pipe )
396- 
397-         image_slices  =  []
398-         for  pipe  in  pipes :
399-             inputs  =  self .get_dummy_inputs (torch_device )
400-             image  =  pipe (** inputs , output = "images" )
401- 
402-             image_slices .append (image [0 , - 3 :, - 3 :, - 1 ].flatten ())
403- 
404-         assert  np .abs (image_slices [0 ] -  image_slices [1 ]).max () <  1e-3 
405- 
406386    def  test_stable_diffusion_xl_save_from_pretrained (self ):
407387        pipes  =  []
408388        sd_pipe  =  self .get_pipeline ().to (torch_device )
0 commit comments