Skip to content

Commit aedf6af

Browse files
committed
Merge remote-tracking branch 'upstream/main' into model-loading-refactor
2 parents 337b2fc + 78bc824 commit aedf6af

File tree

233 files changed

+1388
-457
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

233 files changed

+1388
-457
lines changed

.github/workflows/nightly_tests.yml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -265,7 +265,7 @@ jobs:
265265
266266
- name: Run PyTorch CUDA tests
267267
env:
268-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
268+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
269269
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
270270
CUBLAS_WORKSPACE_CONFIG: :16:8
271271
run: |
@@ -505,7 +505,7 @@ jobs:
505505
# shell: arch -arch arm64 bash {0}
506506
# env:
507507
# HF_HOME: /System/Volumes/Data/mnt/cache
508-
# HF_TOKEN: ${{ secrets.HF_TOKEN }}
508+
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
509509
# run: |
510510
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
511511
# --report-log=tests_torch_mps.log \
@@ -561,7 +561,7 @@ jobs:
561561
# shell: arch -arch arm64 bash {0}
562562
# env:
563563
# HF_HOME: /System/Volumes/Data/mnt/cache
564-
# HF_TOKEN: ${{ secrets.HF_TOKEN }}
564+
# HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
565565
# run: |
566566
# ${CONDA_RUN} python -m pytest -n 1 -s -v --make-reports=tests_torch_mps \
567567
# --report-log=tests_torch_mps.log \

.github/workflows/push_tests.yml

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,7 @@ jobs:
187187
188188
- name: Run Flax TPU tests
189189
env:
190-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
190+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
191191
run: |
192192
python -m pytest -n 0 \
193193
-s -v -k "Flax" \
@@ -235,7 +235,7 @@ jobs:
235235
236236
- name: Run ONNXRuntime CUDA tests
237237
env:
238-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
238+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
239239
run: |
240240
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
241241
-s -v -k "Onnx" \
@@ -283,7 +283,7 @@ jobs:
283283
python utils/print_env.py
284284
- name: Run example tests on GPU
285285
env:
286-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
286+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
287287
RUN_COMPILE: yes
288288
run: |
289289
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
@@ -326,7 +326,7 @@ jobs:
326326
python utils/print_env.py
327327
- name: Run example tests on GPU
328328
env:
329-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
329+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
330330
run: |
331331
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
332332
- name: Failure short reports
@@ -372,7 +372,7 @@ jobs:
372372
373373
- name: Run example tests on GPU
374374
env:
375-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
375+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
376376
run: |
377377
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
378378
python -m uv pip install timm

.github/workflows/release_tests_fast.yml

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -81,7 +81,7 @@ jobs:
8181
python utils/print_env.py
8282
- name: Slow PyTorch CUDA checkpoint tests on Ubuntu
8383
env:
84-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
84+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
8585
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
8686
CUBLAS_WORKSPACE_CONFIG: :16:8
8787
run: |
@@ -135,7 +135,7 @@ jobs:
135135
136136
- name: Run PyTorch CUDA tests
137137
env:
138-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
138+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
139139
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
140140
CUBLAS_WORKSPACE_CONFIG: :16:8
141141
run: |
@@ -186,7 +186,7 @@ jobs:
186186
187187
- name: Run PyTorch CUDA tests
188188
env:
189-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
189+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
190190
# https://pytorch.org/docs/stable/notes/randomness.html#avoiding-nondeterministic-algorithms
191191
CUBLAS_WORKSPACE_CONFIG: :16:8
192192
run: |
@@ -241,7 +241,7 @@ jobs:
241241
242242
- name: Run slow Flax TPU tests
243243
env:
244-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
244+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
245245
run: |
246246
python -m pytest -n 0 \
247247
-s -v -k "Flax" \
@@ -289,7 +289,7 @@ jobs:
289289
290290
- name: Run slow ONNXRuntime CUDA tests
291291
env:
292-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
292+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
293293
run: |
294294
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile \
295295
-s -v -k "Onnx" \
@@ -337,7 +337,7 @@ jobs:
337337
python utils/print_env.py
338338
- name: Run example tests on GPU
339339
env:
340-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
340+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
341341
RUN_COMPILE: yes
342342
run: |
343343
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "compile" --make-reports=tests_torch_compile_cuda tests/
@@ -380,7 +380,7 @@ jobs:
380380
python utils/print_env.py
381381
- name: Run example tests on GPU
382382
env:
383-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
383+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
384384
run: |
385385
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v -k "xformers" --make-reports=tests_torch_xformers_cuda tests/
386386
- name: Failure short reports
@@ -426,7 +426,7 @@ jobs:
426426
427427
- name: Run example tests on GPU
428428
env:
429-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
429+
HF_TOKEN: ${{ secrets.DIFFUSERS_HF_HUB_READ_TOKEN }}
430430
run: |
431431
python -m venv /opt/venv && export PATH="/opt/venv/bin:$PATH"
432432
python -m uv pip install timm

docs/source/en/api/pipelines/mochi.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ export_to_video(frames, "mochi.mp4", fps=30)
115115

116116
## Reproducing the results from the Genmo Mochi repo
117117

118-
The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the the original implementation, please refer to the following example.
118+
The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the original implementation, please refer to the following example.
119119

120120
<Tip>
121121
The original Mochi implementation zeros out empty prompts. However, enabling this option and placing the entire pipeline under autocast can lead to numerical overflows with the T5 text encoder.

docs/source/en/api/utilities.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -41,3 +41,7 @@ Utility and helper functions for working with 🤗 Diffusers.
4141
## randn_tensor
4242

4343
[[autodoc]] utils.torch_utils.randn_tensor
44+
45+
## apply_layerwise_casting
46+
47+
[[autodoc]] hooks.layerwise_casting.apply_layerwise_casting

docs/source/en/optimization/memory.md

Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -158,6 +158,43 @@ In order to properly offload models after they're called, it is required to run
158158

159159
</Tip>
160160

161+
## FP8 layerwise weight-casting
162+
163+
PyTorch supports `torch.float8_e4m3fn` and `torch.float8_e5m2` as weight storage dtypes, but they can't be used for computation in many different tensor operations due to unimplemented kernel support. However, you can use these dtypes to store model weights in fp8 precision and upcast them on-the-fly when the layers are used in the forward pass. This is known as layerwise weight-casting.
164+
165+
Typically, inference on most models is done with `torch.float16` or `torch.bfloat16` weight/computation precision. Layerwise weight-casting cuts down the memory footprint of the model weights by approximately half.
166+
167+
```python
168+
import torch
169+
from diffusers import CogVideoXPipeline, CogVideoXTransformer3DModel
170+
from diffusers.utils import export_to_video
171+
172+
model_id = "THUDM/CogVideoX-5b"
173+
174+
# Load the model in bfloat16 and enable layerwise casting
175+
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16)
176+
transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
177+
178+
# Load the pipeline
179+
pipe = CogVideoXPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.bfloat16)
180+
pipe.to("cuda")
181+
182+
prompt = (
183+
"A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
184+
"The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
185+
"pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
186+
"casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
187+
"The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
188+
"atmosphere of this unique musical performance."
189+
)
190+
video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
191+
export_to_video(video, "output.mp4", fps=8)
192+
```
193+
194+
In the above example, layerwise casting is enabled on the transformer component of the pipeline. By default, certain layers are skipped from the FP8 weight casting because it can lead to significant degradation of generation quality. The normalization and modulation related weight parameters are also skipped by default.
195+
196+
However, you gain more control and flexibility by directly utilizing the [`~hooks.layerwise_casting.apply_layerwise_casting`] function instead of [`~ModelMixin.enable_layerwise_casting`].
197+
161198
## Channels-last memory format
162199

163200
The channels-last memory format is an alternative way of ordering NCHW tensors in memory to preserve dimension ordering. Channels-last tensors are ordered in such a way that the channels become the densest dimension (storing images pixel-per-pixel). Since not all operators currently support the channels-last format, it may result in worst performance but you should still try and see if it works for your model.

examples/advanced_diffusion_training/train_dreambooth_lora_flux_advanced.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
#!/usr/bin/env python
22
# coding=utf-8
3-
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3+
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
44
#
55
# Licensed under the Apache License, Version 2.0 (the "License");
66
# you may not use this file except in compliance with the License.

examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
#!/usr/bin/env python
22
# coding=utf-8
3-
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3+
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
44
#
55
# Licensed under the Apache License, Version 2.0 (the "License");
66
# you may not use this file except in compliance with the License.

examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
#!/usr/bin/env python
22
# coding=utf-8
3-
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3+
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
44
#
55
# Licensed under the Apache License, Version 2.0 (the "License");
66
# you may not use this file except in compliance with the License.

examples/amused/train_amused.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# coding=utf-8
2-
# Copyright 2024 The HuggingFace Inc. team.
2+
# Copyright 2025 The HuggingFace Inc. team.
33
#
44
# Licensed under the Apache License, Version 2.0 (the "License");
55
# you may not use this file except in compliance with the License.

0 commit comments

Comments
 (0)