Skip to content

Commit b1e6ab2

Browse files
committed
login
1 parent f36ba9f commit b1e6ab2

File tree

47 files changed

+59
-59
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

47 files changed

+59
-59
lines changed

benchmarks/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ pip install -r requirements.txt
3131
We need to be authenticated to access some of the checkpoints used during benchmarking:
3232

3333
```sh
34-
huggingface-cli login
34+
hf auth login
3535
```
3636

3737
We use an L40 GPU with 128GB RAM to run the benchmark CI. As such, the benchmarks are configured to run on NVIDIA GPUs. So, make sure you have access to a similar machine (or modify the benchmarking scripts accordingly).

docs/source/en/api/configuration.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from
1616

1717
<Tip>
1818

19-
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `huggingface-cli login`.
19+
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with `hf auth login`.
2020

2121
</Tip>
2222

docs/source/en/api/pipelines/stable_diffusion/stable_diffusion_3.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ _As the model is gated, before using it with diffusers you first need to go to t
3131
Use the command below to log in:
3232

3333
```bash
34-
huggingface-cli login
34+
hf auth login
3535
```
3636

3737
<Tip>

docs/source/en/training/cogvideox.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ When running `accelerate config`, if you use torch.compile, there can be dramati
145145
If you would like to push your model to the Hub after training is completed with a neat model card, make sure you're logged in:
146146

147147
```bash
148-
huggingface-cli login
148+
hf auth login
149149

150150
# Alternatively, you could upload your model manually using:
151151
# huggingface-cli upload my-cool-account-name/my-cool-lora-name /path/to/awesome/lora

docs/source/en/training/create_dataset.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ dataset = load_dataset(
6767
Then use the [`~datasets.Dataset.push_to_hub`] method to upload the dataset to the Hub:
6868

6969
```python
70-
# assuming you have ran the huggingface-cli login command in a terminal
70+
# assuming you have ran the hf auth login command in a terminal
7171
dataset.push_to_hub("name_of_your_dataset")
7272

7373
# if you want to push to a private repo, simply pass private=True:

docs/source/en/tutorials/basic_training.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ We encourage you to share your model with the community, and in order to do that
4242
Or login in from the terminal:
4343

4444
```bash
45-
huggingface-cli login
45+
hf auth login
4646
```
4747

4848
Since the model checkpoints are quite large, install [Git-LFS](https://git-lfs.com/) to version these large files:

docs/source/ko/optimization/mps.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ Diffusers는 Stable Diffusion 추론을 위해 PyTorch `mps`를 사용해 Apple
3737

3838

3939
```python
40-
# `huggingface-cli login`에 로그인되어 있음을 확인
40+
# `hf auth login`에 로그인되어 있음을 확인
4141
from diffusers import DiffusionPipeline
4242

4343
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")

docs/source/ko/training/create_dataset.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@ dataset = load_dataset(
7575
[push_to_hub(https://huggingface.co/docs/datasets/v2.13.1/en/package_reference/main_classes#datasets.Dataset.push_to_hub) 을 사용해서 Hub에 데이터셋을 업로드 합니다:
7676

7777
```python
78-
# 터미널에서 huggingface-cli login 커맨드를 이미 실행했다고 가정합니다
78+
# 터미널에서 hf auth login 커맨드를 이미 실행했다고 가정합니다
7979
dataset.push_to_hub("name_of_your_dataset")
8080

8181
# 개인 repo로 push 하고 싶다면, `private=True` 을 추가하세요:

docs/source/ko/training/lora.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ specific language governing permissions and limitations under the License.
3939
모델을 저장하거나 커뮤니티와 공유하려면 Hugging Face 계정에 로그인하세요(아직 계정이 없는 경우 [생성](https://huggingface.co/join)하세요):
4040

4141
```bash
42-
huggingface-cli login
42+
hf auth login
4343
```
4444

4545
## Text-to-image

docs/source/ko/tutorials/basic_training.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ Unconditional 이미지 생성은 학습에 사용된 데이터셋과 유사한
4242
또는 터미널로 로그인할 수 있습니다:
4343

4444
```bash
45-
huggingface-cli login
45+
hf auth login
4646
```
4747

4848
모델 체크포인트가 상당히 크기 때문에 [Git-LFS](https://git-lfs.com/)에서 대용량 파일의 버전 관리를 할 수 있습니다.

0 commit comments

Comments
 (0)