@@ -4861,24 +4861,27 @@ def _maybe_expand_t2v_lora_for_vace(
48614861 ):
48624862 target_device = transformer .device
48634863 if hasattr (transformer , 'vace_blocks' ):
4864+ print ("HERE 1" )
48644865 inferred_rank_for_vace = None
48654866 lora_weights_dtype_for_vace = next (iter (transformer .parameters ())).dtype # Fallback dtype
48664867
48674868 for k_lora_any , v_lora_tensor_any in state_dict .items ():
48684869 if k_lora_any .endswith (".lora_A.weight" ):
4870+ print ("HERE 2" )
48694871 inferred_rank_for_vace = v_lora_tensor_any .shape [0 ]
48704872 lora_weights_dtype_for_vace = v_lora_tensor_any .dtype
48714873 break # Found one, good enough for rank and dtype
48724874
48734875 if inferred_rank_for_vace is not None :
4876+ print ("HERE 3" )
48744877 # Determine if the LoRA format (as potentially modified by I2V expansion) includes bias
48754878 # This re-checks 'has_bias' based on the *current* state_dict.
48764879 current_lora_has_bias = any (".lora_B.bias" in k for k in state_dict .keys ())
48774880
48784881 for i , vace_block_module_in_model in enumerate (transformer .vace_blocks ):
48794882 # Specifically target proj_out as per the error message
48804883 if hasattr (vace_block_module_in_model , 'proj_out' ):
4881-
4884+ print ( "HERE 4" )
48824885 proj_out_linear_layer_in_model = vace_block_module_in_model .proj_out
48834886
48844887 vace_lora_A_key = f"vace_blocks.{ i } .proj_out.lora_A.weight"
@@ -4898,6 +4901,7 @@ def _maybe_expand_t2v_lora_for_vace(
48984901
48994902 # Use 'current_lora_has_bias' to decide on padding bias for VACE blocks
49004903 if current_lora_has_bias and proj_out_linear_layer_in_model .bias is not None :
4904+ print ("HERE 5" )
49014905 vace_lora_B_bias_key = f"vace_blocks.{ i } .proj_out.lora_B.bias"
49024906 if vace_lora_B_bias_key not in state_dict :
49034907 state_dict [vace_lora_B_bias_key ] = torch .zeros_like (
0 commit comments