|
| 1 | +import argparse |
| 2 | +import os |
| 3 | + |
| 4 | +import torch |
| 5 | +from safetensors.torch import load_file |
| 6 | +from transformers import AutoModel, AutoTokenizer, AutoConfig |
| 7 | + |
| 8 | +from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, OmniGenTransformer2DModel, OmniGenPipeline |
| 9 | + |
| 10 | + |
| 11 | +def main(args): |
| 12 | + # checkpoint from https://huggingface.co/Shitao/OmniGen-v1 |
| 13 | + ckpt = load_file(args.origin_ckpt_path, device="cpu") |
| 14 | + |
| 15 | + mapping_dict = { |
| 16 | + "pos_embed": "patch_embedding.pos_embed", |
| 17 | + "x_embedder.proj.weight": "patch_embedding.output_image_proj.weight", |
| 18 | + "x_embedder.proj.bias": "patch_embedding.output_image_proj.bias", |
| 19 | + "input_x_embedder.proj.weight": "patch_embedding.input_image_proj.weight", |
| 20 | + "input_x_embedder.proj.bias": "patch_embedding.input_image_proj.bias", |
| 21 | + "final_layer.adaLN_modulation.1.weight": "norm_out.linear.weight", |
| 22 | + "final_layer.adaLN_modulation.1.bias": "norm_out.linear.bias", |
| 23 | + "final_layer.linear.weight": "proj_out.weight", |
| 24 | + "final_layer.linear.bias": "proj_out.bias", |
| 25 | + |
| 26 | + } |
| 27 | + |
| 28 | + converted_state_dict = {} |
| 29 | + for k, v in ckpt.items(): |
| 30 | + # new_ckpt[k] = v |
| 31 | + if k in mapping_dict: |
| 32 | + converted_state_dict[mapping_dict[k]] = v |
| 33 | + else: |
| 34 | + converted_state_dict[k] = v |
| 35 | + |
| 36 | + transformer_config = AutoConfig.from_pretrained(args.origin_ckpt_path) |
| 37 | + |
| 38 | + # Lumina-Next-SFT 2B |
| 39 | + transformer = OmniGenTransformer2DModel( |
| 40 | + transformer_config=transformer_config, |
| 41 | + patch_size=2, |
| 42 | + in_channels=4, |
| 43 | + pos_embed_max_size=192, |
| 44 | + ) |
| 45 | + transformer.load_state_dict(converted_state_dict, strict=True) |
| 46 | + |
| 47 | + num_model_params = sum(p.numel() for p in transformer.parameters()) |
| 48 | + print(f"Total number of transformer parameters: {num_model_params}") |
| 49 | + |
| 50 | + scheduler = FlowMatchEulerDiscreteScheduler() |
| 51 | + |
| 52 | + vae = AutoencoderKL.from_pretrained(args.origin_ckpt_path, torch_dtype=torch.float32) |
| 53 | + |
| 54 | + tokenizer = AutoTokenizer.from_pretrained(args.origin_ckpt_path) |
| 55 | + |
| 56 | + |
| 57 | + pipeline = OmniGenPipeline( |
| 58 | + tokenizer=tokenizer, transformer=transformer, vae=vae, scheduler=scheduler |
| 59 | + ) |
| 60 | + pipeline.save_pretrained(args.dump_path) |
| 61 | + |
| 62 | + |
| 63 | +if __name__ == "__main__": |
| 64 | + parser = argparse.ArgumentParser() |
| 65 | + |
| 66 | + parser.add_argument( |
| 67 | + "--origin_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." |
| 68 | + ) |
| 69 | + |
| 70 | + parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") |
| 71 | + |
| 72 | + args = parser.parse_args() |
| 73 | + main(args) |
0 commit comments