@@ -1111,11 +1111,16 @@ def compute_time_ids(original_size, crops_coords_top_left):
11111111
11121112 # 15. LR Scheduler creation
11131113 # Scheduler and math around the number of training steps.
1114- overrode_max_train_steps = False
1115- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
1114+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
1115+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
11161116 if args .max_train_steps is None :
1117- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1118- overrode_max_train_steps = True
1117+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
1118+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
1119+ num_training_steps_for_scheduler = (
1120+ args .num_train_epochs * num_update_steps_per_epoch * accelerator .num_processes
1121+ )
1122+ else :
1123+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
11191124
11201125 if args .scale_lr :
11211126 args .learning_rate = (
@@ -1130,8 +1135,8 @@ def compute_time_ids(original_size, crops_coords_top_left):
11301135 lr_scheduler = get_scheduler (
11311136 args .lr_scheduler ,
11321137 optimizer = optimizer ,
1133- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
1134- num_training_steps = args . max_train_steps * accelerator . num_processes ,
1138+ num_warmup_steps = num_warmup_steps_for_scheduler ,
1139+ num_training_steps = num_training_steps_for_scheduler ,
11351140 )
11361141
11371142 # 16. Prepare for training
@@ -1142,8 +1147,14 @@ def compute_time_ids(original_size, crops_coords_top_left):
11421147
11431148 # We need to recalculate our total training steps as the size of the training dataloader may have changed.
11441149 num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
1145- if overrode_max_train_steps :
1150+ if args . max_train_steps is None :
11461151 args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
1152+ if num_training_steps_for_scheduler != args .max_train_steps * accelerator .num_processes :
1153+ logger .warning (
1154+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
1155+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
1156+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
1157+ )
11471158 # Afterwards we recalculate our number of training epochs
11481159 args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
11491160
0 commit comments