2222from typing import Any , Dict , List , Optional , Tuple , Union
2323
2424import torch
25- from huggingface_hub import create_repo
25+ from huggingface_hub import create_pretrained_model_name_or_path
2626from huggingface_hub .utils import validate_hf_hub_args
2727from tqdm .auto import tqdm
2828from typing_extensions import Self
@@ -325,7 +325,7 @@ def from_pretrained(
325325 )
326326 if not (has_remote_code and trust_remote_code ):
327327 raise ValueError (
328- "Selected model repository does not happear to have any custom code or does not have a valid `config.json` file."
328+ "Selected model pretrained_model_name_or_pathsitory does not happear to have any custom code or does not have a valid `config.json` file."
329329 )
330330
331331 class_ref = config ["auto_map" ][cls .__name__ ]
@@ -366,7 +366,7 @@ def init_pipeline(
366366 collection : Optional [str ] = None ,
367367 ) -> "ModularPipeline" :
368368 """
369- create a ModularPipeline, optionally accept modular_repo to load from hub.
369+ create a ModularPipeline, optionally accept modular_pretrained_model_name_or_path to load from hub.
370370 """
371371 pipeline_class_name = MODULAR_PIPELINE_MAPPING .get (self .model_name , ModularPipeline .__name__ )
372372 diffusers_module = importlib .import_module ("diffusers" )
@@ -1481,7 +1481,7 @@ def __init__(
14811481 pretrained_model_name_or_path: Path to a pretrained pipeline configuration. Can be None if the pipeline
14821482 does not require any additional loading config. If provided, will first try to load component specs
14831483 (only for from_pretrained components) and config values from `modular_model_index.json`, then
1484- fallback to `model_index.json` for compatibility with standard non-modular repositories .
1484+ fallback to `model_index.json` for compatibility with standard non-modular pretrained_model_name_or_pathsitories .
14851485 components_manager:
14861486 Optional ComponentsManager for managing multiple component cross different pipelines and apply
14871487 offloading strategies.
@@ -1494,7 +1494,7 @@ def __init__(
14941494 pipeline = ModularPipeline(blocks=my_custom_blocks)
14951495
14961496 # Initialize from pretrained configuration
1497- pipeline = ModularPipeline(blocks=my_blocks, pretrained_model_name_or_path="my-repo /modular-pipeline")
1497+ pipeline = ModularPipeline(blocks=my_blocks, pretrained_model_name_or_path="my-pretrained_model_name_or_path /modular-pipeline")
14981498
14991499 # Initialize with components manager
15001500 pipeline = ModularPipeline(
@@ -1528,7 +1528,7 @@ def __init__(
15281528 self ._component_specs = {spec .name : deepcopy (spec ) for spec in self .blocks .expected_components }
15291529 self ._config_specs = {spec .name : deepcopy (spec ) for spec in self .blocks .expected_configs }
15301530
1531- # update component_specs and config_specs from modular_repo
1531+ # update component_specs and config_specs from modular_pretrained_model_name_or_path
15321532 if pretrained_model_name_or_path is not None :
15331533 cache_dir = kwargs .pop ("cache_dir" , None )
15341534 force_download = kwargs .pop ("force_download" , False )
@@ -1573,7 +1573,7 @@ def __init__(
15731573
15741574 config_dict = DiffusionPipeline .load_config (pretrained_model_name_or_path , ** load_config_kwargs )
15751575 except EnvironmentError as e :
1576- logger .debug (f" model_index.json not found in the repo : { e } " )
1576+ logger .debug (f" model_index.json not found in the pretrained_model_name_or_path : { e } " )
15771577 config_dict = None
15781578
15791579 # update component_specs and config_specs based on model_index.json
@@ -1582,7 +1582,7 @@ def __init__(
15821582 if name in self ._component_specs and isinstance (value , (tuple , list )) and len (value ) == 2 :
15831583 library , class_name = value
15841584 component_spec_dict = {
1585- "repo " : pretrained_model_name_or_path ,
1585+ "pretrained_model_name_or_path " : pretrained_model_name_or_path ,
15861586 "subfolder" : name ,
15871587 "type_hint" : (library , class_name ),
15881588 }
@@ -1633,13 +1633,13 @@ def from_pretrained(
16331633 ** kwargs ,
16341634 ):
16351635 """
1636- Load a ModularPipeline from a huggingface hub repo .
1636+ Load a ModularPipeline from a huggingface hub pretrained_model_name_or_path .
16371637
16381638 Args:
16391639 pretrained_model_name_or_path (`str` or `os.PathLike`, optional):
16401640 Path to a pretrained pipeline configuration. It will first try to load config from
16411641 `modular_model_index.json`, then fallback to `model_index.json` for compatibility with standard
1642- non-modular repositories . If the repo does not contain any pipeline config, it will be set to None
1642+ non-modular pretrained_model_name_or_pathsitories . If the pretrained_model_name_or_path does not contain any pipeline config, it will be set to None
16431643 during initialization.
16441644 trust_remote_code (`bool`, optional):
16451645 Whether to trust remote code when loading the pipeline, need to be set to True if you want to create
@@ -1679,7 +1679,7 @@ def from_pretrained(
16791679 # try to load modular_model_index.json
16801680 config_dict = cls .load_config (pretrained_model_name_or_path , ** load_config_kwargs )
16811681 except EnvironmentError as e :
1682- logger .debug (f" modular_model_index.json not found in the repo : { e } " )
1682+ logger .debug (f" modular_model_index.json not found in the pretrained_model_name_or_path : { e } " )
16831683 config_dict = None
16841684
16851685 if config_dict is not None :
@@ -1692,7 +1692,7 @@ def from_pretrained(
16921692
16931693 config_dict = DiffusionPipeline .load_config (pretrained_model_name_or_path , ** load_config_kwargs )
16941694 except EnvironmentError as e :
1695- logger .debug (f" model_index.json not found in the repo : { e } " )
1695+ logger .debug (f" model_index.json not found in the pretrained_model_name_or_path : { e } " )
16961696
16971697 if config_dict is not None :
16981698 logger .debug (" try to determine the modular pipeline class from model_index.json" )
@@ -1731,11 +1731,15 @@ def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub:
17311731 private = kwargs .pop ("private" , None )
17321732 create_pr = kwargs .pop ("create_pr" , False )
17331733 token = kwargs .pop ("token" , None )
1734- repo_id = kwargs .pop ("repo_id" , save_directory .split (os .path .sep )[- 1 ])
1735- repo_id = create_repo (repo_id , exist_ok = True , private = private , token = token ).repo_id
1734+ pretrained_model_name_or_path_id = kwargs .pop (
1735+ "pretrained_model_name_or_path_id" , save_directory .split (os .path .sep )[- 1 ]
1736+ )
1737+ pretrained_model_name_or_path_id = create_pretrained_model_name_or_path (
1738+ pretrained_model_name_or_path_id , exist_ok = True , private = private , token = token
1739+ ).pretrained_model_name_or_path_id
17361740
17371741 # Create a new empty model card and eventually tag it
1738- model_card = load_or_create_model_card (repo_id , token = token , is_pipeline = True )
1742+ model_card = load_or_create_model_card (pretrained_model_name_or_path_id , token = token , is_pipeline = True )
17391743 model_card = populate_model_card (model_card )
17401744 model_card .save (os .path .join (save_directory , "README.md" ))
17411745
@@ -1745,7 +1749,7 @@ def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub:
17451749 if push_to_hub :
17461750 self ._upload_folder (
17471751 save_directory ,
1748- repo_id ,
1752+ pretrained_model_name_or_path_id ,
17491753 token = token ,
17501754 commit_message = commit_message ,
17511755 create_pr = create_pr ,
@@ -1809,7 +1813,7 @@ def register_components(self, **kwargs):
18091813 library , class_name = None , None
18101814
18111815 # extract the loading spec from the updated component spec that'll be used as part of modular_model_index.json config
1812- # e.g. {"repo ": "stabilityai/stable-diffusion-2-1",
1816+ # e.g. {"pretrained_model_name_or_path ": "stabilityai/stable-diffusion-2-1",
18131817 # "type_hint": ("diffusers", "UNet2DConditionModel"),
18141818 # "subfolder": "unet",
18151819 # "variant": None,
@@ -2113,7 +2117,7 @@ def load_components(self, names: Optional[Union[List[str], str]] = None, **kwarg
21132117 **kwargs: additional kwargs to be passed to `from_pretrained()`.Can be:
21142118 - a single value to be applied to all components to be loaded, e.g. torch_dtype=torch.bfloat16
21152119 - a dict, e.g. torch_dtype={"unet": torch.bfloat16, "default": torch.float32}
2116- - if potentially override ComponentSpec if passed a different loading field in kwargs, e.g. `repo `,
2120+ - if potentially override ComponentSpec if passed a different loading field in kwargs, e.g. `pretrained_model_name_or_path `,
21172121 `variant`, `revision`, etc.
21182122 """
21192123
@@ -2377,10 +2381,10 @@ def _component_spec_to_dict(component_spec: ComponentSpec) -> Any:
23772381 - "type_hint": Tuple[str, str]
23782382 Library name and class name of the component. (e.g. ("diffusers", "UNet2DConditionModel"))
23792383 - All loading fields defined by `component_spec.loading_fields()`, typically:
2380- - "repo ": Optional[str]
2381- The model repository (e.g., "stabilityai/stable-diffusion-xl").
2384+ - "pretrained_model_name_or_path ": Optional[str]
2385+ The model pretrained_model_name_or_pathsitory (e.g., "stabilityai/stable-diffusion-xl").
23822386 - "subfolder": Optional[str]
2383- A subfolder within the repo where this component lives.
2387+ A subfolder within the pretrained_model_name_or_path where this component lives.
23842388 - "variant": Optional[str]
23852389 An optional variant identifier for the model.
23862390 - "revision": Optional[str]
@@ -2397,11 +2401,11 @@ def _component_spec_to_dict(component_spec: ComponentSpec) -> Any:
23972401 Example:
23982402 >>> from diffusers.pipelines.modular_pipeline_utils import ComponentSpec >>> from diffusers import
23992403 UNet2DConditionModel >>> spec = ComponentSpec(
2400- ... name="unet", ... type_hint=UNet2DConditionModel, ... config=None, ... repo ="path/to/repo ", ...
2404+ ... name="unet", ... type_hint=UNet2DConditionModel, ... config=None, ... pretrained_model_name_or_path ="path/to/pretrained_model_name_or_path ", ...
24012405 subfolder="subfolder", ... variant=None, ... revision=None, ...
24022406 default_creation_method="from_pretrained",
24032407 ... ) >>> ModularPipeline._component_spec_to_dict(spec) {
2404- "type_hint": ("diffusers", "UNet2DConditionModel"), "repo ": "path/to/repo ", "subfolder": "subfolder",
2408+ "type_hint": ("diffusers", "UNet2DConditionModel"), "pretrained_model_name_or_path ": "path/to/pretrained_model_name_or_path ", "subfolder": "subfolder",
24052409 "variant": None, "revision": None,
24062410 }
24072411 """
@@ -2431,10 +2435,10 @@ def _dict_to_component_spec(
24312435 - "type_hint": Tuple[str, str]
24322436 Library name and class name of the component. (e.g. ("diffusers", "UNet2DConditionModel"))
24332437 - All loading fields defined by `component_spec.loading_fields()`, typically:
2434- - "repo ": Optional[str]
2435- The model repository (e.g., "stabilityai/stable-diffusion-xl").
2438+ - "pretrained_model_name_or_path ": Optional[str]
2439+ The model pretrained_model_name_or_pathsitory (e.g., "stabilityai/stable-diffusion-xl").
24362440 - "subfolder": Optional[str]
2437- A subfolder within the repo where this component lives.
2441+ A subfolder within the pretrained_model_name_or_path where this component lives.
24382442 - "variant": Optional[str]
24392443 An optional variant identifier for the model.
24402444 - "revision": Optional[str]
@@ -2451,10 +2455,10 @@ def _dict_to_component_spec(
24512455 ComponentSpec: A reconstructed ComponentSpec object.
24522456
24532457 Example:
2454- >>> spec_dict = { ... "type_hint": ("diffusers", "UNet2DConditionModel"), ... "repo ":
2458+ >>> spec_dict = { ... "type_hint": ("diffusers", "UNet2DConditionModel"), ... "pretrained_model_name_or_path ":
24552459 "stabilityai/stable-diffusion-xl", ... "subfolder": "unet", ... "variant": None, ... "revision": None, ...
24562460 } >>> ModularPipeline._dict_to_component_spec("unet", spec_dict) ComponentSpec(
2457- name="unet", type_hint=UNet2DConditionModel, config=None, repo ="stabilityai/stable-diffusion-xl",
2461+ name="unet", type_hint=UNet2DConditionModel, config=None, pretrained_model_name_or_path ="stabilityai/stable-diffusion-xl",
24582462 subfolder="unet", variant=None, revision=None, default_creation_method="from_pretrained"
24592463 )
24602464 """
0 commit comments