Skip to content

Commit c9d624b

Browse files
Merge branch 'main' into main
2 parents 9ed5284 + 66eef9a commit c9d624b

File tree

55 files changed

+5282
-343
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

55 files changed

+5282
-343
lines changed

docs/source/en/api/pipelines/pag.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,9 @@ Since RegEx is supported as a way for matching layer identifiers, it is crucial
5555

5656
## StableDiffusionControlNetPAGPipeline
5757
[[autodoc]] StableDiffusionControlNetPAGPipeline
58+
59+
## StableDiffusionControlNetPAGInpaintPipeline
60+
[[autodoc]] StableDiffusionControlNetPAGInpaintPipeline
5861
- all
5962
- __call__
6063

docs/source/en/api/schedulers/overview.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -52,6 +52,7 @@ Many schedulers are implemented from the [k-diffusion](https://github.com/crowso
5252
| sgm_uniform | init with `timestep_spacing="trailing"` |
5353
| simple | init with `timestep_spacing="trailing"` |
5454
| exponential | init with `timestep_spacing="linspace"`, `use_exponential_sigmas=True` |
55+
| beta | init with `timestep_spacing="linspace"`, `use_beta_sigmas=True` |
5556

5657
All schedulers are built from the base [`SchedulerMixin`] class which implements low level utilities shared by all schedulers.
5758

docs/source/en/training/distributed_inference.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -177,7 +177,7 @@ transformer = FluxTransformer2DModel.from_pretrained(
177177
```
178178

179179
> [!TIP]
180-
> At any point, you can try `print(pipeline.hf_device_map)` to see how the various models are distributed across devices. This is useful for tracking the device placement of the models.
180+
> At any point, you can try `print(pipeline.hf_device_map)` to see how the various models are distributed across devices. This is useful for tracking the device placement of the models. You can also try `print(transformer.hf_device_map)` to see how the transformer model is sharded across devices.
181181
182182
Add the transformer model to the pipeline for denoising, but set the other model-level components like the text encoders and VAE to `None` because you don't need them yet.
183183

examples/cogvideo/README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -180,6 +180,7 @@ Note that setting the `<ID_TOKEN>` is not necessary. From some limited experimen
180180

181181
> [!TIP]
182182
> You can pass `--use_8bit_adam` to reduce the memory requirements of training.
183+
> You can pass `--video_reshape_mode` video cropping functionality, supporting options: ['center', 'random', 'none']. See [this](https://gist.github.com/glide-the/7658dbfd5f555be0a1a687a4139dba40) notebook for examples.
183184
184185
> [!IMPORTANT]
185186
> The following settings have been tested at the time of adding CogVideoX LoRA training support:

examples/cogvideo/train_cogvideox_lora.py

Lines changed: 80 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -21,27 +21,28 @@
2121
from pathlib import Path
2222
from typing import List, Optional, Tuple, Union
2323

24+
import numpy as np
2425
import torch
26+
import torchvision.transforms as TT
2527
import transformers
2628
from accelerate import Accelerator
2729
from accelerate.logging import get_logger
2830
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
2931
from huggingface_hub import create_repo, upload_folder
3032
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
3133
from torch.utils.data import DataLoader, Dataset
32-
from torchvision import transforms
34+
from torchvision.transforms import InterpolationMode
35+
from torchvision.transforms.functional import resize
3336
from tqdm.auto import tqdm
3437
from transformers import AutoTokenizer, T5EncoderModel, T5Tokenizer
3538

3639
import diffusers
3740
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel
41+
from diffusers.image_processor import VaeImageProcessor
3842
from diffusers.models.embeddings import get_3d_rotary_pos_embed
3943
from diffusers.optimization import get_scheduler
4044
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
41-
from diffusers.training_utils import (
42-
cast_training_params,
43-
clear_objs_and_retain_memory,
44-
)
45+
from diffusers.training_utils import cast_training_params, free_memory
4546
from diffusers.utils import check_min_version, convert_unet_state_dict_to_peft, export_to_video, is_wandb_available
4647
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
4748
from diffusers.utils.torch_utils import is_compiled_module
@@ -217,6 +218,12 @@ def get_args():
217218
default=720,
218219
help="All input videos are resized to this width.",
219220
)
221+
parser.add_argument(
222+
"--video_reshape_mode",
223+
type=str,
224+
default="center",
225+
help="All input videos are reshaped to this mode. Choose between ['center', 'random', 'none']",
226+
)
220227
parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.")
221228
parser.add_argument(
222229
"--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames."
@@ -416,6 +423,7 @@ def __init__(
416423
video_column: str = "video",
417424
height: int = 480,
418425
width: int = 720,
426+
video_reshape_mode: str = "center",
419427
fps: int = 8,
420428
max_num_frames: int = 49,
421429
skip_frames_start: int = 0,
@@ -432,6 +440,7 @@ def __init__(
432440
self.video_column = video_column
433441
self.height = height
434442
self.width = width
443+
self.video_reshape_mode = video_reshape_mode
435444
self.fps = fps
436445
self.max_num_frames = max_num_frames
437446
self.skip_frames_start = skip_frames_start
@@ -535,6 +544,38 @@ def _load_dataset_from_local_path(self):
535544

536545
return instance_prompts, instance_videos
537546

547+
def _resize_for_rectangle_crop(self, arr):
548+
image_size = self.height, self.width
549+
reshape_mode = self.video_reshape_mode
550+
if arr.shape[3] / arr.shape[2] > image_size[1] / image_size[0]:
551+
arr = resize(
552+
arr,
553+
size=[image_size[0], int(arr.shape[3] * image_size[0] / arr.shape[2])],
554+
interpolation=InterpolationMode.BICUBIC,
555+
)
556+
else:
557+
arr = resize(
558+
arr,
559+
size=[int(arr.shape[2] * image_size[1] / arr.shape[3]), image_size[1]],
560+
interpolation=InterpolationMode.BICUBIC,
561+
)
562+
563+
h, w = arr.shape[2], arr.shape[3]
564+
arr = arr.squeeze(0)
565+
566+
delta_h = h - image_size[0]
567+
delta_w = w - image_size[1]
568+
569+
if reshape_mode == "random" or reshape_mode == "none":
570+
top = np.random.randint(0, delta_h + 1)
571+
left = np.random.randint(0, delta_w + 1)
572+
elif reshape_mode == "center":
573+
top, left = delta_h // 2, delta_w // 2
574+
else:
575+
raise NotImplementedError
576+
arr = TT.functional.crop(arr, top=top, left=left, height=image_size[0], width=image_size[1])
577+
return arr
578+
538579
def _preprocess_data(self):
539580
try:
540581
import decord
@@ -545,15 +586,14 @@ def _preprocess_data(self):
545586

546587
decord.bridge.set_bridge("torch")
547588

548-
videos = []
549-
train_transforms = transforms.Compose(
550-
[
551-
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0),
552-
]
589+
progress_dataset_bar = tqdm(
590+
range(0, len(self.instance_video_paths)),
591+
desc="Loading progress resize and crop videos",
553592
)
593+
videos = []
554594

555595
for filename in self.instance_video_paths:
556-
video_reader = decord.VideoReader(uri=filename.as_posix(), width=self.width, height=self.height)
596+
video_reader = decord.VideoReader(uri=filename.as_posix())
557597
video_num_frames = len(video_reader)
558598

559599
start_frame = min(self.skip_frames_start, video_num_frames)
@@ -579,10 +619,16 @@ def _preprocess_data(self):
579619
assert (selected_num_frames - 1) % 4 == 0
580620

581621
# Training transforms
582-
frames = frames.float()
583-
frames = torch.stack([train_transforms(frame) for frame in frames], dim=0)
584-
videos.append(frames.permute(0, 3, 1, 2).contiguous()) # [F, C, H, W]
622+
frames = (frames - 127.5) / 127.5
623+
frames = frames.permute(0, 3, 1, 2) # [F, C, H, W]
624+
progress_dataset_bar.set_description(
625+
f"Loading progress Resizing video from {frames.shape[2]}x{frames.shape[3]} to {self.height}x{self.width}"
626+
)
627+
frames = self._resize_for_rectangle_crop(frames)
628+
videos.append(frames.contiguous()) # [F, C, H, W]
629+
progress_dataset_bar.update(1)
585630

631+
progress_dataset_bar.close()
586632
return videos
587633

588634

@@ -697,8 +743,13 @@ def log_validation(
697743

698744
videos = []
699745
for _ in range(args.num_validation_videos):
700-
video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]
701-
videos.append(video)
746+
pt_images = pipe(**pipeline_args, generator=generator, output_type="pt").frames[0]
747+
pt_images = torch.stack([pt_images[i] for i in range(pt_images.shape[0])])
748+
749+
image_np = VaeImageProcessor.pt_to_numpy(pt_images)
750+
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
751+
752+
videos.append(image_pil)
702753

703754
for tracker in accelerator.trackers:
704755
phase_name = "test" if is_final_validation else "validation"
@@ -726,7 +777,8 @@ def log_validation(
726777
}
727778
)
728779

729-
clear_objs_and_retain_memory([pipe])
780+
del pipe
781+
free_memory()
730782

731783
return videos
732784

@@ -1173,6 +1225,7 @@ def load_model_hook(models, input_dir):
11731225
video_column=args.video_column,
11741226
height=args.height,
11751227
width=args.width,
1228+
video_reshape_mode=args.video_reshape_mode,
11761229
fps=args.fps,
11771230
max_num_frames=args.max_num_frames,
11781231
skip_frames_start=args.skip_frames_start,
@@ -1181,13 +1234,21 @@ def load_model_hook(models, input_dir):
11811234
id_token=args.id_token,
11821235
)
11831236

1184-
def encode_video(video):
1237+
def encode_video(video, bar):
1238+
bar.update(1)
11851239
video = video.to(accelerator.device, dtype=vae.dtype).unsqueeze(0)
11861240
video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
11871241
latent_dist = vae.encode(video).latent_dist
11881242
return latent_dist
11891243

1190-
train_dataset.instance_videos = [encode_video(video) for video in train_dataset.instance_videos]
1244+
progress_encode_bar = tqdm(
1245+
range(0, len(train_dataset.instance_videos)),
1246+
desc="Loading Encode videos",
1247+
)
1248+
train_dataset.instance_videos = [
1249+
encode_video(video, progress_encode_bar) for video in train_dataset.instance_videos
1250+
]
1251+
progress_encode_bar.close()
11911252

11921253
def collate_fn(examples):
11931254
videos = [example["instance_video"].sample() * vae.config.scaling_factor for example in examples]

0 commit comments

Comments
 (0)