@@ -418,21 +418,21 @@ def __call__(self, components: StableDiffusionXLModularPipeline, state: Pipeline
418
418
device = components ._execution_device
419
419
420
420
block_state .timesteps , block_state .num_inference_steps = retrieve_timesteps (
421
- components .scheduler ,
422
- block_state .num_inference_steps ,
423
- block_state . device ,
424
- block_state .timesteps ,
425
- block_state .sigmas ,
421
+ scheduler = components .scheduler ,
422
+ num_inference_steps = block_state .num_inference_steps ,
423
+ device = device ,
424
+ timesteps = block_state .timesteps ,
425
+ sigmas = block_state .sigmas ,
426
426
)
427
427
428
428
def denoising_value_valid (dnv ):
429
429
return isinstance (dnv , float ) and 0 < dnv < 1
430
430
431
431
block_state .timesteps , block_state .num_inference_steps = self .get_timesteps (
432
- components ,
433
- block_state .num_inference_steps ,
434
- block_state .strength ,
435
- device ,
432
+ components = components ,
433
+ num_inference_steps = block_state .num_inference_steps ,
434
+ strength = block_state .strength ,
435
+ device = device ,
436
436
denoising_start = block_state .denoising_start
437
437
if denoising_value_valid (block_state .denoising_start )
438
438
else None ,
@@ -498,14 +498,14 @@ def intermediate_outputs(self) -> List[OutputParam]:
498
498
def __call__ (self , components : StableDiffusionXLModularPipeline , state : PipelineState ) -> PipelineState :
499
499
block_state = self .get_block_state (state )
500
500
501
- block_state . device = components ._execution_device
501
+ device = components ._execution_device
502
502
503
503
block_state .timesteps , block_state .num_inference_steps = retrieve_timesteps (
504
- components .scheduler ,
505
- block_state .num_inference_steps ,
506
- block_state . device ,
507
- block_state .timesteps ,
508
- block_state .sigmas ,
504
+ scheduler = components .scheduler ,
505
+ num_inference_steps = block_state .num_inference_steps ,
506
+ device = device ,
507
+ timesteps = block_state .timesteps ,
508
+ sigmas = block_state .sigmas ,
509
509
)
510
510
511
511
if (
@@ -581,7 +581,7 @@ def intermediate_inputs(self) -> List[str]:
581
581
description = "The latents representing the reference image for image-to-image/inpainting generation. Can be generated in vae_encode step." ,
582
582
),
583
583
InputParam (
584
- "mask " ,
584
+ "processed_mask_image " ,
585
585
required = True ,
586
586
type_hint = torch .Tensor ,
587
587
description = "The mask for the inpainting generation. Can be generated in vae_encode step." ,
@@ -591,7 +591,7 @@ def intermediate_inputs(self) -> List[str]:
591
591
type_hint = torch .Tensor ,
592
592
description = "The masked image latents for the inpainting generation (only for inpainting-specific unet). Can be generated in vae_encode step." ,
593
593
),
594
- InputParam ("dtype" , type_hint = torch .dtype , description = "The dtype of the model inputs" ),
594
+ InputParam ("dtype" , type_hint = torch .dtype , description = "The dtype of the model inputs, can be generated in input step. " ),
595
595
]
596
596
597
597
@property
0 commit comments