@@ -418,21 +418,21 @@ def __call__(self, components: StableDiffusionXLModularPipeline, state: Pipeline
418418        device  =  components ._execution_device 
419419
420420        block_state .timesteps , block_state .num_inference_steps  =  retrieve_timesteps (
421-             components .scheduler ,
422-             block_state .num_inference_steps ,
423-             block_state . device ,
424-             block_state .timesteps ,
425-             block_state .sigmas ,
421+             scheduler = components .scheduler ,
422+             num_inference_steps = block_state .num_inference_steps ,
423+             device = device ,
424+             timesteps = block_state .timesteps ,
425+             sigmas = block_state .sigmas ,
426426        )
427427
428428        def  denoising_value_valid (dnv ):
429429            return  isinstance (dnv , float ) and  0  <  dnv  <  1 
430430
431431        block_state .timesteps , block_state .num_inference_steps  =  self .get_timesteps (
432-             components ,
433-             block_state .num_inference_steps ,
434-             block_state .strength ,
435-             device ,
432+             components = components ,
433+             num_inference_steps = block_state .num_inference_steps ,
434+             strength = block_state .strength ,
435+             device = device ,
436436            denoising_start = block_state .denoising_start 
437437            if  denoising_value_valid (block_state .denoising_start )
438438            else  None ,
@@ -498,14 +498,14 @@ def intermediate_outputs(self) -> List[OutputParam]:
498498    def  __call__ (self , components : StableDiffusionXLModularPipeline , state : PipelineState ) ->  PipelineState :
499499        block_state  =  self .get_block_state (state )
500500
501-         block_state . device  =  components ._execution_device 
501+         device  =  components ._execution_device 
502502
503503        block_state .timesteps , block_state .num_inference_steps  =  retrieve_timesteps (
504-             components .scheduler ,
505-             block_state .num_inference_steps ,
506-             block_state . device ,
507-             block_state .timesteps ,
508-             block_state .sigmas ,
504+             scheduler = components .scheduler ,
505+             num_inference_steps = block_state .num_inference_steps ,
506+             device = device ,
507+             timesteps = block_state .timesteps ,
508+             sigmas = block_state .sigmas ,
509509        )
510510
511511        if  (
@@ -581,7 +581,7 @@ def intermediate_inputs(self) -> List[str]:
581581                description = "The latents representing the reference image for image-to-image/inpainting generation. Can be generated in vae_encode step." ,
582582            ),
583583            InputParam (
584-                 "mask " ,
584+                 "processed_mask_image " ,
585585                required = True ,
586586                type_hint = torch .Tensor ,
587587                description = "The mask for the inpainting generation. Can be generated in vae_encode step." ,
@@ -591,7 +591,7 @@ def intermediate_inputs(self) -> List[str]:
591591                type_hint = torch .Tensor ,
592592                description = "The masked image latents for the inpainting generation (only for inpainting-specific unet). Can be generated in vae_encode step." ,
593593            ),
594-             InputParam ("dtype" , type_hint = torch .dtype , description = "The dtype of the model inputs" ),
594+             InputParam ("dtype" , type_hint = torch .dtype , description = "The dtype of the model inputs, can be generated in input step. " ),
595595        ]
596596
597597    @property  
0 commit comments