Skip to content

Commit e92eabf

Browse files
committed
runwayml take-down make change to sd-legacy
1 parent 872b78f commit e92eabf

27 files changed

+66
-66
lines changed

src/diffusers/pipelines/auto_pipeline.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -293,7 +293,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
293293
If you get the error message below, you need to finetune the weights for your downstream task:
294294
295295
```
296-
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
296+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
297297
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
298298
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
299299
```
@@ -385,7 +385,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
385385
```py
386386
>>> from diffusers import AutoPipelineForText2Image
387387
388-
>>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
388+
>>> pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
389389
>>> image = pipeline(prompt).images[0]
390390
```
391391
"""
@@ -448,7 +448,7 @@ def from_pipe(cls, pipeline, **kwargs):
448448
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
449449
450450
>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
451-
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
451+
... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
452452
... )
453453
454454
>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
@@ -589,7 +589,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
589589
If you get the error message below, you need to finetune the weights for your downstream task:
590590
591591
```
592-
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
592+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
593593
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
594594
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
595595
```
@@ -681,7 +681,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
681681
```py
682682
>>> from diffusers import AutoPipelineForImage2Image
683683
684-
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
684+
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
685685
>>> image = pipeline(prompt, image).images[0]
686686
```
687687
"""
@@ -756,7 +756,7 @@ def from_pipe(cls, pipeline, **kwargs):
756756
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
757757
758758
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
759-
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
759+
... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
760760
... )
761761
762762
>>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
@@ -900,7 +900,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
900900
If you get the error message below, you need to finetune the weights for your downstream task:
901901
902902
```
903-
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
903+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
904904
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
905905
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
906906
```
@@ -992,7 +992,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
992992
```py
993993
>>> from diffusers import AutoPipelineForInpainting
994994
995-
>>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
995+
>>> pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
996996
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
997997
```
998998
"""

src/diffusers/pipelines/pipeline_flax_utils.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -237,14 +237,14 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
237237
If you get the error message below, you need to finetune the weights for your downstream task:
238238
239239
```
240-
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
240+
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
241241
```
242242
243243
Parameters:
244244
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
245245
Can be either:
246246
247-
- A string, the *repo id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained pipeline
247+
- A string, the *repo id* (for example `stable-diffusion-v1-5/stable-diffusion-v1-5`) of a pretrained pipeline
248248
hosted on the Hub.
249249
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
250250
using [`~FlaxDiffusionPipeline.save_pretrained`].
@@ -293,15 +293,15 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
293293
>>> # Requires to be logged in to Hugging Face hub,
294294
>>> # see more in [the documentation](https://huggingface.co/docs/hub/security-tokens)
295295
>>> pipeline, params = FlaxDiffusionPipeline.from_pretrained(
296-
... "runwayml/stable-diffusion-v1-5",
296+
... "stable-diffusion-v1-5/stable-diffusion-v1-5",
297297
... variant="bf16",
298298
... dtype=jnp.bfloat16,
299299
... )
300300
301301
>>> # Download pipeline, but use a different scheduler
302302
>>> from diffusers import FlaxDPMSolverMultistepScheduler
303303
304-
>>> model_id = "runwayml/stable-diffusion-v1-5"
304+
>>> model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
305305
>>> dpmpp, dpmpp_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
306306
... model_id,
307307
... subfolder="scheduler",
@@ -559,7 +559,7 @@ def components(self) -> Dict[str, Any]:
559559
... )
560560
561561
>>> text2img = FlaxStableDiffusionPipeline.from_pretrained(
562-
... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16
562+
... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16
563563
... )
564564
>>> img2img = FlaxStableDiffusionImg2ImgPipeline(**text2img.components)
565565
```

src/diffusers/pipelines/pipeline_loading_utils.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -813,9 +813,9 @@ def _maybe_raise_warning_for_inpainting(pipeline_class, pretrained_model_name_or
813813
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
814814
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
815815
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
816-
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
816+
" checkpoint: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting instead or adapting your"
817817
f" checkpoint {pretrained_model_name_or_path} to the format of"
818-
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
818+
" https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting. Note that we do not actively maintain"
819819
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
820820
)
821821
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

src/diffusers/pipelines/pipeline_utils.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -516,7 +516,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
516516
If you get the error message below, you need to finetune the weights for your downstream task:
517517
518518
```
519-
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
519+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
520520
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
521521
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
522522
```
@@ -643,7 +643,7 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
643643
>>> # Download pipeline that requires an authorization token
644644
>>> # For more information on access tokens, please refer to this section
645645
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
646-
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
646+
>>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
647647
648648
>>> # Use a different scheduler
649649
>>> from diffusers import LMSDiscreteScheduler
@@ -1555,7 +1555,7 @@ def components(self) -> Dict[str, Any]:
15551555
... StableDiffusionInpaintPipeline,
15561556
... )
15571557
1558-
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
1558+
>>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
15591559
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
15601560
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
15611561
```
@@ -1688,7 +1688,7 @@ def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto
16881688
>>> from diffusers import StableDiffusionPipeline
16891689
16901690
>>> pipe = StableDiffusionPipeline.from_pretrained(
1691-
... "runwayml/stable-diffusion-v1-5",
1691+
... "stable-diffusion-v1-5/stable-diffusion-v1-5",
16921692
... torch_dtype=torch.float16,
16931693
... use_safetensors=True,
16941694
... )
@@ -1735,7 +1735,7 @@ def from_pipe(cls, pipeline, **kwargs):
17351735
```py
17361736
>>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline
17371737
1738-
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
1738+
>>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
17391739
>>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
17401740
```
17411741
"""

src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@
5555
>>> from diffusers import FlaxStableDiffusionPipeline
5656
5757
>>> pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
58-
... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16
58+
... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16
5959
... )
6060
6161
>>> prompt = "a photo of an astronaut riding a horse on mars"
@@ -100,7 +100,7 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
100100
[`FlaxDPMSolverMultistepScheduler`].
101101
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
102102
Classification module that estimates whether generated images could be considered offensive or harmful.
103-
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
103+
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
104104
about a model's potential harms.
105105
feature_extractor ([`~transformers.CLIPImageProcessor`]):
106106
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -141,8 +141,8 @@ def __init__(
141141
"The configuration file of the unet has set the default `sample_size` to smaller than"
142142
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
143143
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
144-
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
145-
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
144+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
145+
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
146146
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
147147
" in the config might lead to incorrect results in future versions. If you have downloaded this"
148148
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@ class FlaxStableDiffusionImg2ImgPipeline(FlaxDiffusionPipeline):
124124
[`FlaxDPMSolverMultistepScheduler`].
125125
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
126126
Classification module that estimates whether generated images could be considered offensive or harmful.
127-
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
127+
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
128128
about a model's potential harms.
129129
feature_extractor ([`~transformers.CLIPImageProcessor`]):
130130
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.

src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ class FlaxStableDiffusionInpaintPipeline(FlaxDiffusionPipeline):
127127
[`FlaxDPMSolverMultistepScheduler`].
128128
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
129129
Classification module that estimates whether generated images could be considered offensive or harmful.
130-
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
130+
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
131131
about a model's potential harms.
132132
feature_extractor ([`~transformers.CLIPImageProcessor`]):
133133
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -168,8 +168,8 @@ def __init__(
168168
"The configuration file of the unet has set the default `sample_size` to smaller than"
169169
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
170170
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
171-
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
172-
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
171+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
172+
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
173173
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
174174
" in the config might lead to incorrect results in future versions. If you have downloaded this"
175175
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"

src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
7878
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
7979
safety_checker ([`StableDiffusionSafetyChecker`]):
8080
Classification module that estimates whether generated images could be considered offensive or harmful.
81-
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
81+
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
8282
feature_extractor ([`CLIPImageProcessor`]):
8383
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
8484
"""

src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline):
7676
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
7777
safety_checker ([`StableDiffusionSafetyChecker`]):
7878
Classification module that estimates whether generated images could be considered offensive or harmful.
79-
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
79+
Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
8080
feature_extractor ([`CLIPImageProcessor`]):
8181
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
8282
"""

0 commit comments

Comments
 (0)