|
17 | 17 | import os |
18 | 18 | import re |
19 | 19 | import tempfile |
20 | | -import unittest |
21 | 20 | from itertools import product |
22 | 21 |
|
23 | 22 | import numpy as np |
@@ -1013,28 +1012,6 @@ def test_unexpected_keys_warning(self): |
1013 | 1012 |
|
1014 | 1013 | self.assertTrue(".diffusers_cat" in cap_logger.out) |
1015 | 1014 |
|
1016 | | - @unittest.skip("This is failing for now - need to investigate") |
1017 | | - def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self): |
1018 | | - """ |
1019 | | - Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights |
1020 | | - and makes sure it works as expected |
1021 | | - """ |
1022 | | - for scheduler_cls in self.scheduler_classes: |
1023 | | - pipe, inputs, _, text_lora_config, denoiser_lora_config = self._setup_pipeline_and_get_base_output( |
1024 | | - scheduler_cls |
1025 | | - ) |
1026 | | - |
1027 | | - pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config) |
1028 | | - |
1029 | | - pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
1030 | | - pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True) |
1031 | | - |
1032 | | - if self.has_two_text_encoders or self.has_three_text_encoders: |
1033 | | - pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True) |
1034 | | - |
1035 | | - # Just makes sure it works.. |
1036 | | - _ = pipe(**inputs, generator=torch.manual_seed(0))[0] |
1037 | | - |
1038 | 1015 | def test_modify_padding_mode(self): |
1039 | 1016 | def set_pad_mode(network, mode="circular"): |
1040 | 1017 | for _, module in network.named_modules(): |
|
0 commit comments