-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Open
Labels
bugSomething isn't workingSomething isn't workingstaleIssues that haven't received updatesIssues that haven't received updates
Description
Describe the bug
The FlaxUNet2DConditionModel allows specifying the dtype of the weights. Supplying a dtype different from float32 does not seem to be propagated to the actual model. This is imo different from #2068 since the afaik the code has correct dtype initialization. but the result is still incorrect. So this is not connected to loading FP32 weights or something similar.
Reproduction
import diffusers
from jax import random, numpy as jnp
dummy_input = jnp.zeros((2, 4, 32, 32), dtype=jnp.bfloat16)
dummy_t = jnp.zeros(2, dtype=jnp.bfloat16)
model = diffusers.FlaxUNet2DConditionModel(dtype=jnp.bfloat16)
key1, key2 = random.split(random.key(0))
params = model.init(key1, dummy_input, dummy_t, None)
print(jax.tree_util.tree_map(jnp.dtype, params))Logs
{'params': {'conv_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_norm_out': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'conv_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'down_blocks_0': {'attentions_0': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_1': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'downsamplers_0': {'conv': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'down_blocks_1': {'attentions_0': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_1': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'downsamplers_0': {'conv': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'down_blocks_2': {'attentions_0': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_1': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'downsamplers_0': {'conv': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'down_blocks_3': {'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'mid_block': {'attentions_0': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'time_embedding': {'linear_1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'linear_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'up_blocks_0': {'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_2': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'upsamplers_0': {'conv': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'up_blocks_1': {'attentions_0': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_1': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_2': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_2': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'upsamplers_0': {'conv': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'up_blocks_2': {'attentions_0': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_1': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_2': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_2': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'upsamplers_0': {'conv': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}, 'up_blocks_3': {'attentions_0': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_1': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'attentions_2': {'norm': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'proj_in': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'proj_out': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'transformer_blocks_0': {'attn1': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'attn2': {'to_k': {'kernel': dtype('float32')}, 'to_out_0': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'to_q': {'kernel': dtype('float32')}, 'to_v': {'kernel': dtype('float32')}}, 'ff': {'net_0': {'proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'net_2': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm3': {'bias': dtype('float32'), 'scale': dtype('float32')}}}, 'resnets_0': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_1': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}, 'resnets_2': {'conv1': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv2': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'conv_shortcut': {'bias': dtype('float32'), 'kernel': dtype('float32')}, 'norm1': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'norm2': {'bias': dtype('float32'), 'scale': dtype('float32')}, 'time_emb_proj': {'bias': dtype('float32'), 'kernel': dtype('float32')}}}}}
System Info
- π€ Diffusers version: 0.32.2
- Platform: Linux-6.1.85+-x86_64-with-glibc2.35
- Running on Google Colab?: Yes
- Python version: 3.11.11
- PyTorch version (GPU?): 2.6.0+cu124 (True)
- Flax version (CPU?/GPU?/TPU?): 0.10.4 (gpu)
- Jax version: 0.5.2
- JaxLib version: 0.5.1
- Huggingface_hub version: 0.29.3
- Transformers version: 4.49.0
- Accelerate version: 1.5.2
- PEFT version: 0.14.0
- Bitsandbytes version: not installed
- Safetensors version: 0.5.3
- xFormers version: not installed
- Accelerator: Tesla T4, 15360 MiB
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
Who can help?
No response
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleIssues that haven't received updatesIssues that haven't received updates