-
Couldn't load subscription status.
- Fork 6.5k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Describe the bug
I using script: examples/controlnet/train_controlnet_flux.py want to train a new controlnet with my own dataset.
First I try to train toy-dataset (fill50k) as examples/controlnet/README_flux.md and the parameters as the same to README_flux.md
The only difference is train controlnet with Flux.1-dev2pro checkpoints and test with Flux.1-dev, this Flux.1-dev2pro model is from https://huggingface.co/ashen0209/Flux-Dev2Pro and the dataset is download to local
python scripts/yqfont/5_train_controlnet_flux.py \
--pretrained_model_name_or_path="/data/**/Weights/black-forest-labs/FLUX.1-dev2pro" \
--jsonl_for_train="/data2/public/hf_dataset/fill50k/train.jsonl" \
--cache_dir="/data2/public/hf_dataset/fill50k_cache" \
--conditioning_image_column=conditioning_image \
--image_column=image \
--caption_column=text \
--output_dir="runs/fill50k-2" \
--mixed_precision="bf16" \
--resolution=512 \
--learning_rate=1e-5 \
--max_train_steps=60000 \
--checkpoints_total_limit=5 \
--validation_steps=100 \
--checkpointing_steps=200 \
--validation_image "projects/fill50k_controlnet_test/test_data/conditioning_image_1.png" "projects/fill50k_controlnet_test/test_data/conditioning_image_2.png" \
--validation_prompt "red circle with blue background" "cyan circle with brown floral background" \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--report_to="tensorboard" \
--num_double_layers=4 \
--num_single_layers=0 \
--seed=42
the result is not controlable!
'
This is my validation image result in tensorboard
Reproduction
# This File Copied diffusers/examples/controlnet/train_controlnet_flux.py
# time: 2025-03-24
#---------------------------------
#!/usr/bin/env python
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import copy
import functools
import logging
import math
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedType, ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import (
AutoTokenizer,
CLIPTextModel,
T5EncoderModel,
)
import diffusers
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
FluxTransformer2DModel,
)
from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel
from diffusers.optimization import get_scheduler
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
from diffusers.training_utils import compute_density_for_timestep_sampling, free_memory
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.33.0.dev0")
logger = get_logger(__name__)
if is_torch_npu_available():
torch.npu.config.allow_internal_format = False
@torch.no_grad()
def log_validation(
vae, flux_transformer, flux_controlnet, args, accelerator, weight_dtype, step, is_final_validation=False
):
logger.info("Running validation... ")
if not is_final_validation:
flux_controlnet = accelerator.unwrap_model(flux_controlnet)
pipeline = FluxControlNetPipeline.from_pretrained(
args.pretrained_model_name_or_path.strip("2pro"),
controlnet=flux_controlnet,
transformer=flux_transformer,
torch_dtype=torch.bfloat16,
)
else:
flux_controlnet = FluxControlNetModel.from_pretrained(
args.output_dir, torch_dtype=torch.bfloat16, variant=args.save_weight_dtype
)
pipeline = FluxControlNetPipeline.from_pretrained(
args.pretrained_model_name_or_path.strip("2pro"),
controlnet=flux_controlnet,
transformer=flux_transformer,
torch_dtype=torch.bfloat16,
)
pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
if len(args.validation_image) == len(args.validation_prompt):
validation_images = args.validation_image
validation_prompts = args.validation_prompt
elif len(args.validation_image) == 1:
validation_images = args.validation_image * len(args.validation_prompt)
validation_prompts = args.validation_prompt
elif len(args.validation_prompt) == 1:
validation_images = args.validation_image
validation_prompts = args.validation_prompt * len(args.validation_image)
else:
raise ValueError(
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
)
image_logs = []
if is_final_validation or torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(accelerator.device.type)
for validation_prompt, validation_image in zip(validation_prompts, validation_images):
from diffusers.utils import load_image
validation_image = load_image(validation_image)
# maybe need to inference on 1024 to get a good image
validation_image = validation_image.resize((args.resolution, args.resolution))
images = []
# pre calculate prompt embeds, pooled prompt embeds, text ids because t5 does not support autocast
prompt_embeds, pooled_prompt_embeds, text_ids = pipeline.encode_prompt(
validation_prompt, prompt_2=validation_prompt
)
for _ in range(args.num_validation_images):
with autocast_ctx:
# need to fix in pipeline_flux_controlnet
image = pipeline(
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
control_image=validation_image,
num_inference_steps=28,
controlnet_conditioning_scale=0.7,
guidance_scale=3.5,
generator=generator,
).images[0]
image = image.resize((args.resolution, args.resolution))
images.append(image)
image_logs.append(
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
)
tracker_key = "test" if is_final_validation else "validation"
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
validation_image = log["validation_image"]
formatted_images = [np.asarray(validation_image)]
for image in images:
formatted_images.append(np.asarray(image))
formatted_images = np.stack(formatted_images)
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
elif tracker.name == "wandb":
formatted_images = []
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
validation_image = log["validation_image"]
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
for image in images:
image = wandb.Image(image, caption=validation_prompt)
formatted_images.append(image)
tracker.log({tracker_key: formatted_images})
else:
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
free_memory()
return image_logs
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
img_str = ""
if image_logs is not None:
img_str = "You can find some example images below.\n\n"
for i, log in enumerate(image_logs):
images = log["images"]
validation_prompt = log["validation_prompt"]
validation_image = log["validation_image"]
validation_image.save(os.path.join(repo_folder, "image_control.png"))
img_str += f"prompt: {validation_prompt}\n"
images = [validation_image] + images
make_image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
img_str += f"\n"
model_description = f"""
# controlnet-{repo_id}
These are controlnet weights trained on {base_model} with new type of conditioning.
{img_str}
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)
"""
model_card = load_or_create_model_card(
repo_id_or_path=repo_id,
from_training=True,
license="other",
base_model=base_model,
model_description=model_description,
inference=True,
)
tags = [
"flux",
"flux-diffusers",
"text-to-image",
"diffusers",
"controlnet",
"diffusers-training",
]
model_card = populate_model_card(model_card, tags=tags)
model_card.save(os.path.join(repo_folder, "README.md"))
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--controlnet_model_name_or_path",
type=str,
default=None,
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
" If not specified controlnet weights are initialized from unet.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--output_dir",
type=str,
default="controlnet-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--crops_coords_top_left_h",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--crops_coords_top_left_w",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=10,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--use_adafactor",
action="store_true",
help=(
"Adafactor is a stochastic optimization method based on Adam that reduces memory usage while retaining"
"the empirical benefits of adaptivity. This is achieved through maintaining a factored representation "
"of the squared gradient accumulator across training steps."
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--enable_npu_flash_attention", action="store_true", help="Whether or not to use npu flash attention."
)
parser.add_argument(
"--set_grads_to_none",
action="store_true",
help=(
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
" behaviors, so disable this argument if it causes any problems. More info:"
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
),
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that π€ Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing the target image."
)
parser.add_argument(
"--conditioning_image_column",
type=str,
default="conditioning_image",
help="The column of the dataset containing the controlnet conditioning image.",
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--proportion_empty_prompts",
type=float,
default=0,
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
nargs="+",
help=(
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
),
)
parser.add_argument(
"--validation_image",
type=str,
default=None,
nargs="+",
help=(
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
" `--validation_image` that will be used with all `--validation_prompt`s."
),
)
parser.add_argument(
"--num_double_layers",
type=int,
default=4,
help="Number of double layers in the controlnet (default: 4).",
)
parser.add_argument(
"--num_single_layers",
type=int,
default=4,
help="Number of single layers in the controlnet (default: 4).",
)
parser.add_argument(
"--num_validation_images",
type=int,
default=2,
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
)
parser.add_argument(
"--validation_steps",
type=int,
default=100,
help=(
"Run validation every X steps. Validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`"
" and logging the images."
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="flux_train_controlnet",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--jsonl_for_train",
type=str,
default=None,
help="Path to the jsonl file containing the training data.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=3.5,
help="the guidance scale used for transformer.",
)
parser.add_argument(
"--save_weight_dtype",
type=str,
default="fp32",
choices=[
"fp16",
"bf16",
"fp32",
],
help=("Preserve precision type according to selected weight"),
)
parser.add_argument(
"--weighting_scheme",
type=str,
default="logit_normal",
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'),
)
parser.add_argument(
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
)
parser.add_argument(
"--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme."
)
parser.add_argument(
"--mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
)
parser.add_argument(
"--enable_model_cpu_offload",
action="store_true",
help="Enable model cpu offload and save memory.",
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
if args.dataset_name is None and args.jsonl_for_train is None:
raise ValueError("Specify either `--dataset_name` or `--jsonl_for_train`")
if args.dataset_name is not None and args.jsonl_for_train is not None:
raise ValueError("Specify only one of `--dataset_name` or `--jsonl_for_train`")
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")
if args.validation_prompt is not None and args.validation_image is None:
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
if args.validation_prompt is None and args.validation_image is not None:
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
if (
args.validation_image is not None
and args.validation_prompt is not None
and len(args.validation_image) != 1
and len(args.validation_prompt) != 1
and len(args.validation_image) != len(args.validation_prompt)
):
raise ValueError(
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
" or the same number of `--validation_prompt`s and `--validation_image`s"
)
if args.resolution % 8 != 0:
raise ValueError(
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
)
return args
def get_train_dataset(args, accelerator):
dataset = None
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
)
if args.jsonl_for_train is not None:
# load from json
dataset = load_dataset("json", data_files=args.jsonl_for_train, cache_dir=args.cache_dir)
dataset = dataset.flatten_indices()
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
if args.image_column is None:
image_column = column_names[0]
logger.info(f"image column defaulting to {image_column}")
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = column_names[1]
logger.info(f"caption column defaulting to {caption_column}")
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
)
if args.conditioning_image_column is None:
conditioning_image_column = column_names[2]
logger.info(f"conditioning image column defaulting to {conditioning_image_column}")
else:
conditioning_image_column = args.conditioning_image_column
if conditioning_image_column not in column_names:
raise ValueError(
f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
)
with accelerator.main_process_first():
train_dataset = dataset["train"].shuffle(seed=args.seed)
if args.max_train_samples is not None:
train_dataset = train_dataset.select(range(args.max_train_samples))
return train_dataset
def prepare_train_dataset(dataset, accelerator):
image_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
conditioning_image_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_train(examples):
data_path = "/data2/public/hf_dataset/fill50k"
images = [
(image.convert("RGB") if not isinstance(image, str) else Image.open(os.path.join(data_path,image)).convert("RGB"))
for image in examples[args.image_column]
]
images = [image_transforms(image) for image in images]
conditioning_images = [
(image.convert("RGB") if not isinstance(image, str) else Image.open(os.path.join(data_path,image)).convert("RGB"))
for image in examples[args.conditioning_image_column]
]
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
examples["pixel_values"] = images
examples["conditioning_pixel_values"] = conditioning_images
return examples
with accelerator.main_process_first():
dataset = dataset.with_transform(preprocess_train)
return dataset
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()
prompt_ids = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples])
pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples])
text_ids = torch.stack([torch.tensor(example["text_ids"]) for example in examples])
return {
"pixel_values": pixel_values,
"conditioning_pixel_values": conditioning_pixel_values,
"prompt_ids": prompt_ids,
"unet_added_conditions": {"pooled_prompt_embeds": pooled_prompt_embeds, "time_ids": text_ids},
}
def main(args):
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
logging_out_dir = Path(args.output_dir, args.logging_dir)
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=str(logging_out_dir))
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
# Disable AMP for MPS. A technique for accelerating machine learning computations on iOS and macOS devices.
if torch.backends.mps.is_available():
print("MPS is enabled. Disabling AMP.")
accelerator.native_amp = False
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
# DEBUG, INFO, WARNING, ERROR, CRITICAL
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
# Load the tokenizers
# load clip tokenizer
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
# load t5 tokenizer
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
)
# load clip text encoder
text_encoder_one = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
# load t5 text encoder
text_encoder_two = T5EncoderModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
)
flux_transformer = FluxTransformer2DModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="transformer",
revision=args.revision,
variant=args.variant,
)
if args.controlnet_model_name_or_path:
logger.info("Loading existing controlnet weights")
flux_controlnet = FluxControlNetModel.from_pretrained(args.controlnet_model_name_or_path)
else:
logger.info("Initializing controlnet weights from transformer")
# we can define the num_layers, num_single_layers,
flux_controlnet = FluxControlNetModel.from_transformer(
flux_transformer,
attention_head_dim=flux_transformer.config["attention_head_dim"],
num_attention_heads=flux_transformer.config["num_attention_heads"],
num_layers=args.num_double_layers,
num_single_layers=args.num_single_layers,
)
logger.info("all models loaded successfully")
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="scheduler",
)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
vae.requires_grad_(False)
flux_transformer.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
flux_controlnet.train()
# use some pipeline function
flux_controlnet_pipeline = FluxControlNetPipeline(
scheduler=noise_scheduler,
vae=vae,
text_encoder=text_encoder_one,
tokenizer=tokenizer_one,
text_encoder_2=text_encoder_two,
tokenizer_2=tokenizer_two,
transformer=flux_transformer,
controlnet=flux_controlnet,
)
if args.enable_model_cpu_offload:
flux_controlnet_pipeline.enable_model_cpu_offload()
else:
flux_controlnet_pipeline.to(accelerator.device)
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
i = len(weights) - 1
while len(weights) > 0:
weights.pop()
model = models[i]
sub_dir = "flux_controlnet"
model.save_pretrained(os.path.join(output_dir, sub_dir))
i -= 1
def load_model_hook(models, input_dir):
while len(models) > 0:
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = FluxControlNetModel.from_pretrained(input_dir, subfolder="flux_controlnet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if args.enable_npu_flash_attention:
if is_torch_npu_available():
logger.info("npu flash attention enabled.")
flux_transformer.enable_npu_flash_attention()
else:
raise ValueError("npu flash attention requires torch_npu extensions and is supported only on npu devices.")
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
flux_transformer.enable_xformers_memory_efficient_attention()
flux_controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
flux_transformer.enable_gradient_checkpointing()
flux_controlnet.enable_gradient_checkpointing()
# Check that all trainable models are in full precision
low_precision_error_string = (
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
" doing mixed precision training, copy of the weights should still be float32."
)
if unwrap_model(flux_controlnet).dtype != torch.float32:
raise ValueError(
f"Controlnet loaded as datatype {unwrap_model(flux_controlnet).dtype}. {low_precision_error_string}"
)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# Optimizer creation
params_to_optimize = flux_controlnet.parameters()
# use adafactor optimizer to save gpu memory
if args.use_adafactor:
from transformers import Adafactor
optimizer = Adafactor(
params_to_optimize,
lr=args.learning_rate,
scale_parameter=False,
relative_step=False,
# warmup_init=True,
weight_decay=args.adam_weight_decay,
)
else:
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
vae.to(accelerator.device, dtype=weight_dtype)
flux_transformer.to(accelerator.device, dtype=weight_dtype)
def compute_embeddings(batch, proportion_empty_prompts, flux_controlnet_pipeline, weight_dtype, is_train=True):
prompt_batch = batch[args.caption_column]
captions = []
for caption in prompt_batch:
if random.random() < proportion_empty_prompts:
captions.append("")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
prompt_batch = captions
prompt_embeds, pooled_prompt_embeds, text_ids = flux_controlnet_pipeline.encode_prompt(
prompt_batch, prompt_2=prompt_batch
)
prompt_embeds = prompt_embeds.to(dtype=weight_dtype)
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=weight_dtype)
text_ids = text_ids.to(dtype=weight_dtype)
# text_ids [512,3] to [bs,512,3]
text_ids = text_ids.unsqueeze(0).expand(prompt_embeds.shape[0], -1, -1)
return {"prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "text_ids": text_ids}
train_dataset = get_train_dataset(args, accelerator) # yq
text_encoders = [text_encoder_one, text_encoder_two]
tokenizers = [tokenizer_one, tokenizer_two]
compute_embeddings_fn = functools.partial(
compute_embeddings,
flux_controlnet_pipeline=flux_controlnet_pipeline,
proportion_empty_prompts=args.proportion_empty_prompts,
weight_dtype=weight_dtype,
)
with accelerator.main_process_first():
from datasets.fingerprint import Hasher
# fingerprint used by the cache for the other processes to load the result
# details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401
new_fingerprint = Hasher.hash(args.cache_dir)
train_dataset = train_dataset.map(
compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint, batch_size=50
)
del text_encoders, tokenizers, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two
free_memory()
# Then get the training dataset ready to be passed to the dataloader.
train_dataset = prepare_train_dataset(train_dataset, accelerator)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
if args.max_train_steps is None:
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
num_training_steps_for_scheduler = (
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes
)
else:
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
flux_controlnet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
flux_controlnet, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes:
logger.warning(
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
f"This inconsistency may result in the learning rate scheduler not functioning properly."
)
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = dict(vars(args))
# tensorboard cannot handle list types for config
tracker_config.pop("validation_prompt")
tracker_config.pop("validation_image")
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
image_logs = None
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(flux_controlnet):
# Convert images to latent space
# vae encode
pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
pixel_latents_tmp = vae.encode(pixel_values).latent_dist.sample()
pixel_latents_tmp = (pixel_latents_tmp - vae.config.shift_factor) * vae.config.scaling_factor
pixel_latents = FluxControlNetPipeline._pack_latents(
pixel_latents_tmp,
pixel_values.shape[0],
pixel_latents_tmp.shape[1],
pixel_latents_tmp.shape[2],
pixel_latents_tmp.shape[3],
)
control_values = batch["conditioning_pixel_values"].to(dtype=weight_dtype)
control_latents = vae.encode(control_values).latent_dist.sample()
control_latents = (control_latents - vae.config.shift_factor) * vae.config.scaling_factor
control_image = FluxControlNetPipeline._pack_latents(
control_latents,
control_values.shape[0],
control_latents.shape[1],
control_latents.shape[2],
control_latents.shape[3],
)
latent_image_ids = FluxControlNetPipeline._prepare_latent_image_ids(
batch_size=pixel_latents_tmp.shape[0],
height=pixel_latents_tmp.shape[2] // 2,
width=pixel_latents_tmp.shape[3] // 2,
device=pixel_values.device,
dtype=pixel_values.dtype,
)
bsz = pixel_latents.shape[0]
noise = torch.randn_like(pixel_latents).to(accelerator.device).to(dtype=weight_dtype)
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=pixel_latents.device)
# Add noise according to flow matching.
sigmas = get_sigmas(timesteps, n_dim=pixel_latents.ndim, dtype=pixel_latents.dtype)
noisy_model_input = (1.0 - sigmas) * pixel_latents + sigmas * noise
# handle guidance
if flux_transformer.config.guidance_embeds:
guidance_vec = torch.full(
(noisy_model_input.shape[0],),
args.guidance_scale,
device=noisy_model_input.device,
dtype=weight_dtype,
)
else:
guidance_vec = None
controlnet_block_samples, controlnet_single_block_samples = flux_controlnet(
hidden_states=noisy_model_input,
controlnet_cond=control_image,
timestep=timesteps / 1000,
guidance=guidance_vec,
pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype),
encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype),
txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype),
img_ids=latent_image_ids,
return_dict=False,
)
noise_pred = flux_transformer(
hidden_states=noisy_model_input,
timestep=timesteps / 1000,
guidance=guidance_vec,
pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype),
encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype),
controlnet_block_samples=[sample.to(dtype=weight_dtype) for sample in controlnet_block_samples]
if controlnet_block_samples is not None
else None,
controlnet_single_block_samples=[
sample.to(dtype=weight_dtype) for sample in controlnet_single_block_samples
]
if controlnet_single_block_samples is not None
else None,
txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype),
img_ids=latent_image_ids,
return_dict=False,
)[0]
loss = F.mse_loss(noise_pred.float(), (noise - pixel_latents).float(), reduction="mean")
accelerator.backward(loss)
# Check if the gradient of each model parameter contains NaN
for name, param in flux_controlnet.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
logger.error(f"Gradient for {name} contains NaN!")
if accelerator.sync_gradients:
params_to_clip = flux_controlnet.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
# DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues.
if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if args.validation_prompt is not None and global_step % args.validation_steps == 0:
image_logs = log_validation(
vae=vae,
flux_transformer=flux_transformer,
flux_controlnet=flux_controlnet,
args=args,
accelerator=accelerator,
weight_dtype=weight_dtype,
step=global_step,
)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
# Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
flux_controlnet = unwrap_model(flux_controlnet)
save_weight_dtype = torch.float32
if args.save_weight_dtype == "fp16":
save_weight_dtype = torch.float16
elif args.save_weight_dtype == "bf16":
save_weight_dtype = torch.bfloat16
flux_controlnet.to(save_weight_dtype)
if args.save_weight_dtype != "fp32":
flux_controlnet.save_pretrained(args.output_dir, variant=args.save_weight_dtype)
else:
flux_controlnet.save_pretrained(args.output_dir)
# Run a final round of validation.
# Setting `vae`, `unet`, and `controlnet` to None to load automatically from `args.output_dir`.
image_logs = None
if args.validation_prompt is not None:
image_logs = log_validation(
vae=vae,
flux_transformer=flux_transformer,
flux_controlnet=None,
args=args,
accelerator=accelerator,
weight_dtype=weight_dtype,
step=global_step,
is_final_validation=True,
)
if args.push_to_hub:
save_model_card(
repo_id,
image_logs=image_logs,
base_model=args.pretrained_model_name_or_path,
repo_folder=args.output_dir,
)
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)
Logs
System Info
- π€ Diffusers version: 0.33.0.dev0
- Platform: Linux-5.15.0-130-generic-x86_64-with-glibc2.31
- Running on Google Colab?: No
- Python version: 3.11.11
- PyTorch version (GPU?): 2.5.1+cu124 (True)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Huggingface_hub version: 0.27.0
- Transformers version: 4.47.1
- Accelerate version: 1.2.1
- PEFT version: 0.14.0
- Bitsandbytes version: 0.45.0
- Safetensors version: 0.4.5
- xFormers version: not installed
- Accelerator: NVIDIA A800 80GB PCIe, 81920 MiB
NVIDIA A800 80GB PCIe, 81920 MiB - Using GPU in script?:
- Using distributed or parallel set-up in script?:
Who can help?
No response
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working