Skip to content

Hidream Inference is giving error: RuntimeError: expected mat1 and mat2 to have the same dtype, but got: c10::Half != c10::BFloat16Β #11436

@omrastogi

Description

@omrastogi

Describe the bug

There appears to be an issue in the _get_clip_prompt_embeds function, possibly due to the dtype of self.text_encoder being float16 instead of the expected bfloat16.

Reproduction

I am using the code from diffuser documentation
Diffusers version: 0.34.0.dev0

import torch
from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
from diffusers import UniPCMultistepScheduler, HiDreamImagePipeline


tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
text_encoder_4 = LlamaForCausalLM.from_pretrained(
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
    output_hidden_states=True,
    output_attentions=True,
    torch_dtype=torch.bfloat16,
)

pipe = HiDreamImagePipeline.from_pretrained(
    "HiDream-ai/HiDream-I1-Full",
    tokenizer_4=tokenizer_4,
    text_encoder_4=text_encoder_4,
    torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()

image = pipe(
    'A cat holding a sign that says "Hi-Dreams.ai".',
    height=1024,
    width=1024,
    guidance_scale=5.0,
    num_inference_steps=50,
    generator=torch.Generator("cuda").manual_seed(0),
).images[0]
image.save("output.png")

Logs

(ai-toolkit) (base) om@C2P1R3H5:/mnt/data/om/ai-toolkit$ CUDA_VISIBLE_DEVICES=1 python hidream-inference0.py 
/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:818: UserWarning: `return_dict_in_generate` is NOT set to `True`, but `output_attentions` is. When `return_dict_in_generate` is not `True`, `output_attentions` is ignored.
  warnings.warn(
/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/transformers/generation/configuration_utils.py:818: UserWarning: `return_dict_in_generate` is NOT set to `True`, but `output_hidden_states` is. When `return_dict_in_generate` is not `True`, `output_hidden_states` is ignored.
  warnings.warn(
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 10.04it/s]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 10.92it/s]
Loading checkpoint shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 7/7 [00:02<00:00,  2.58it/s]
Loading pipeline components...: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 11/11 [00:04<00:00,  2.70it/s]
Type of text encoder: torch.float16
Traceback (most recent call last):
  File "/mnt/data/om/ai-toolkit/hidream-inference0.py", line 22, in <module>
    image = pipe(
            ^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/mnt/data/om/diffusers/src/diffusers/pipelines/hidream_image/pipeline_hidream_image.py", line 889, in __call__
    ) = self.encode_prompt(
        ^^^^^^^^^^^^^^^^^^^
  File "/mnt/data/om/diffusers/src/diffusers/pipelines/hidream_image/pipeline_hidream_image.py", line 341, in encode_prompt
    pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/mnt/data/om/diffusers/src/diffusers/pipelines/hidream_image/pipeline_hidream_image.py", line 256, in _get_clip_prompt_embeds
    prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/accelerate/hooks.py", line 176, in new_forward
    output = module._old_forward(*args, **kwargs)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/transformers/models/clip/modeling_clip.py", line 1490, in forward
    text_embeds = self.text_projection(pooled_output)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/om/miniconda3/envs/ai-toolkit/lib/python3.11/site-packages/torch/nn/modules/linear.py", line 125, in forward
    return F.linear(input, self.weight, self.bias)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: expected mat1 and mat2 to have the same dtype, but got: c10::Half != c10::BFloat16

System Info

  • πŸ€— Diffusers version: 0.33.1
  • Platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35
  • Running on Google Colab?: No
  • Python version: 3.10.12
  • PyTorch version (GPU?): 2.2.0+cu118 (True)
  • Flax version (CPU?/GPU?/TPU?): not installed (NA)
  • Jax version: not installed
  • JaxLib version: not installed
  • Huggingface_hub version: 0.30.2
  • Transformers version: 4.51.3
  • Accelerate version: 1.6.0
  • PEFT version: not installed
  • Bitsandbytes version: not installed
  • Safetensors version: 0.5.3
  • xFormers version: not installed
  • Accelerator: NVIDIA H100 80GB HBM3, 81559 MiB
    NVIDIA H100 80GB HBM3, 81559 MiB
    NVIDIA H100 80GB HBM3, 81559 MiB
    NVIDIA H100 80GB HBM3, 81559 MiB
    NVIDIA H100 80GB HBM3, 81559 MiB
    NVIDIA H100 80GB HBM3, 81559 MiB
    NVIDIA H100 80GB HBM3, 81559 MiB
    NVIDIA H100 80GB HBM3, 81559 MiB
  • Using GPU in script?: 0
  • Using distributed or parallel set-up in script?: No

Who can help?

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions