I have successfully fine-tuned a Stable Diffusion v1.5 model using the Dreambooth script, and the results are excellent. However, I've encountered a compatibility issue when using this custom model with pre-trained ControlNets. Since the Dreambooth process modifies the U-Net weights, the original ControlNet is no longer aligned with the fine-tuned model, leading to a significant degradation in control and image quality.
My goal is to find a way to make them compatible again. It's important to clarify that I am trying to avoid a full, separate fine-tuning of the ControlNet on my custom model. That process is data- and resource-intensive, which defeats the purpose of a lightweight personalization method like Dreambooth. I have tried modifying the train_dreambooth.py script to incorporate ControlNet, but results have been consistently poor.
Is there a dedicated script or a recommended workflow in diffusers to fine-tune a Stable Diffusion with ControlNet via Dreambooth? Any guidance or pointers would be greatly appreciated. Thanks a lot!